• Tidak ada hasil yang ditemukan

Azkab MH. 1999. Pedoman inventarisasi lamun. Oseana. 24(1):1-6.

Azkab MH. 2006. Ada apa dengan lamun. Majalah Semi Populer Oseana. 31(3):45-55.

Azis A. 1995. Beberapa catatan tentang teripang bangsa aspidochirotida. Oseana. 20(4):11-23.

Azis A, Bujang JS, Zakaria MH, Suryana Y, Ghaffar MA. 2006. Fish communities from seagrass bed of Merchang Lagoon, Trengganu, Penninsular Malaysia. Coast Mar Sci. 30(10):268-275.

Bjork M, Short F, Mcleod E, Beer S. 2008. Managing seagrasses for resilience to climate change. IUCN Resilience Science Group Working Paper Series-No 3. IUCN, Gland, Switzerland. 56 hlm.

Bos AR, Bouma TJ, de Kort GLJ, van Katwijk MM. 2007. Ecosystem engineering by annual intertidal seagrass beds: sediment accretion and modification. Est Coast Shelf Sci. 74:344-348.

Choo PS. 2008. Population status, fisheries and trade of sea cucumbers in Asia. In: Toral-Granda V, Lovatelli A, Vasconcellos M. (eds). Sea cucumbers: a global review on fisheries and trade. FAO Fisheries and Aquaculture Technical Paper. No. 516. Rome, FAO. hlm 119–142.

Conand C, Muthiga N. 2008. Commercial sea cucumbers: a review for the Western Indian Ocean. WIOMSA Book Series 5. 66 hlm.

Coremap. 2001. Critc report: baseline study Wakatobi Sulawesi Tenggara. Coral Reef Rehabiliotation and Management Program. Jakarta. 132 hlm.

Costa V, Mazzola A, Vizzini S. 2014. Holothuria tubulosa Gmelin 1791 (holothuroidea, echinodermata) enhances organic matter recycling in Posidonia oceanica meadows. Journal of Experimental Marine Biology and Ecology. 461:226-232.

Cui FX, Xue CH, Li ZJ, Zhang YQ. 2007. Characterization and subunit composition of collagen from the body wall of sea cucumber Stichopus japonicus. Food Chemistry. 100:1120-1125.

Curtis JMR, Vincent ACJ. 2005. Distribution of sympatric seahorse species along a gradient of habitat complexity in a seagrass dominated community. Mar Ecol Prog Ser. 291:81-91.

Dance SK, Lane I, Bell JD. 2003. Variation in short-term survival of cultured sandfish (Holothuria scabra) released in mangrove-seagrass and coral reef flat habitats in Solomon Islands. Aquaculture. 220:495-505.

Darsono P. 1999. Sumberdaya teripang di pulau-pulau Mentawai, Sumatera Barat. Seminar Kelautan Kedua Regional Sumatera. Padang. 6-7 Agustus. 9 hlm. Darsono P. 2002. Sumberdaya teripang di pulau-pulau Derawan, Kalimantan Timur.

Oseana. 27(1):9-18.

den Hartog C. 1970. The Seagrasses of the world. North-Holland. Amsterdam. 275 pp.

Dissanayake DCT, Wijeyaratne MJ S. 2007. Studies on the sea cucumber fishery in the north western coastal region of Sri Lanka. Sri Lanka J. Aquat. Sci. 12:19-38.

Dissanayake DCT, Stefansson G. 2012. Habitat preference of sea cucumbers:

27

Journal of the Marine Biological Association of the United Kingdom. 92(3):581-590.

DKP Wakatobi. 2013. Data penangkapan Kabupaten Wakatobi. Dinas Kelautan dan Perikanan Kabupaten Wakatobi.

Duarte CM, Middelburg JJ, dan Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciencec. 2:1-8.

Effendi H. 2003. Telaah kualitas air bagi pengelolaan sumber daya lingkungan perairan. Penerbit Kanisius. Yogyakarta. 258 hlm.

English S, Wilkinson C, Baker V. 1997. Survey manual for tropical marine recourses. Australian Institute of Marine Science. Townsville. 390 hlm.

Friedman K, Purcell S, Hair C. 2008. Sea cucumber fisheries: a manager’s toolbox. Australian Centre of International Agricultural Research. ACIAR Monograph No. 135. 32 pp.

Graham JCH dan Battaglene SC. 2004. Periodic movement and sheltering behaviour of Actinopyga mauritiana (Holothuroidea: Aspidochirotidae) in Solomon Islands. SPC Beche-de-mer Inf Bull. 19:23-31.

Hudson IR, Wigham BD, Solan M, Rosenberg R. 2005. Feeding behaviour of deep sea dwelling holothurians: inferences from a laboratory investigation of shallow fjordic species. J. Mar. Syst. 57:201-218.

Kerr AM, Netchy K, Gawel AM. 2006. Survey of the shallow-water sea cucumbers of the central philippines. University of Guam Marine Laboratory. Technical Report No. 119. 56 hlm.

Kiswara W. 1992. Vegetasi lamun (seagrass) di rataan terumbu Pulau Pari, Pulau-Pulau Seribu, Jakarta. Makalah diajukan dalam seminar ilmiah nasional peringatan Lustrum VII Fakultas Biologi Universitas Gadjah Mada, Yogyakarta, 20-21 September, 1990. Balitbang Biologi, Puslitbang Oseanologi-LIPI. Jakarta. 25:31-49.

Kiswara W, Ulumuddin YI. 2009. Peran vegetasi pantai dalam siklus karbon global: mangrove dan lamun sebagai rosot karbon. Woekshop ocean and climate change. Laut sebagai pengendali perubahan iklim: peran laut Indonesia dalam mereduksi percepatan proses pemanasan global. Bogor 4 Agustus 2009.

Laksmi V, Goel AK, Srivastava MN, Kulshreshta DK, Raghubir R. 2006. Bioactivity of marine organism: part IX-screening of some marine flora from Indian Coasts. IJEB. 44:137-141.

Larkum AWD, Orth RJ, Duarte CM. 2006. Seagrasses: biology, ecology and conservation. Springer. 690 hlm.

Lee J, Byme M, Uthicke S. 2008. The influence of population density on fission and growth of Holothuria atra in Natural Mesocosm. J.Exp.Mar.Biol.Ecol. 363:126-135.

Martoyo J, Aji N, Winanto T. 2006. Budidaya teripang. Edisi Revisi. Penebar Swadaya. Jakarta. 72 hlm.

McKenzie LJ, Campbell SJ, Roder CA. 2001. Seagrass-Wacth: manual for mapping and monitoring seagrass resources by Community (Citizen) Volunteers. QFS, NFC, Calms. 100 hlm.

Menteri Negara Lingkungan Hidup. 2004. Keputusan Menteri Negara Lingkungan Hidup tentang baku mutu air laut untuk biota laut. Jakarta: KEP No. 51/MENLH/I/2004. 8 April 2004.

28

Mercier A, Battaglene SC, Hamel JF. 2000. Settlement preferences and early

migration of the tropical sea cucumber Holothuria scabra. Journal of

Experimental Marine Biology and Ecology. 249:89-110.

Michio K, Kengo K, Yasunori K, Hitoshi M, Takayuki Y, Hideaki Y, Hiroshi S. 2003. Effects of deposit feeder Stichopus japonicus on algal bloom and organic matter contents of bottom sediments of The Enclosed Sea. Mar. Pollut. Bull. 47:118-125.

Nienhuis PH, Coosen J, Kiswara W. 1989. Community structure and biomass distribution of seagrasses and macrofauna in the Flores Sea, Indonesia. SeaResearch. 23(2):197-214.

Nontji A. 2007. Laut nusantara. Penerbit Djambatan. Jakarta. 372 hlm.

Nybakken JW. 1992. Biologi laut. Suatu pendekatan ekologis. PT Gramedia Pustaka Utama. Jakarta. 459 hlm.

Odum EP. 1996. Dasar-dasar ekologi edisi ketiga. Penerjemah; Samingan T dan Srigandono B. Gadjah Mada University Press. Yogyakarta. 697 hal.

Peterson CH, Luettich Jr, Micheli F, Skilleter GA. 2004. Attenuation of water flow inside seagrass canopies of differing structure. Mar Ecol Prog Ser. 268:81-92. Philips RS, Menez EG. 1988. Seagrasses. Smithsonian Institute Press. Washington

DC. 104 hlm.

Purcell SW, Samyn Y, Conand, C. 2012. Commercially important sea cucumbers of the world. Food and Agriculture Organization of The United Nations. FAO Species Catalogue for Fishery Purposes No. 6. Rome. 223 hlm.

Purwati P. 2005. Teripang Indonesia: komposisi jenis dan sejarah perikanan. Oseana. 30 (2):11-18.

Purwati P, Widianwary P, Dwiono SAP. 2008. Timun laut Teluk Medana, Lombok Barat: pola sebaran dan kelimpahan. 13(4):219-226.

Slater MJ, Jeffs AG. 2010. Do benthic sediment characteristics explain the

distribution of juveniles of the deposit-feeding sea cucumber Australostichopus

mollis. JournalofSeaResearch. 64:241-249.

Short FT, Coles RG. 2001. Global seagrass research methods. Elsevier Science BV. Amsterdam. 506 hlm.

Tomascik T, Mah AJ, Nontji A, Moosa MK. 1997. The ecology of the indonesian seas. The Ecology of Indonesia series. Vol VIII. Singapore: Periplus Edition (HK) Ltd. 552 hlm.

Unsworth RKF, Garrard SL, De Leon PS, Cullen LC, Smith DJ, Sloman KA, Bell JJ. 2009. Structuring of Indo-Pacific fish assemblages along the mangrove-seagrass continuum. Aquat Biol. 5:85-95.

Uthicke S. 2001. Influence of asexual reproduction on the structure and dynamics of

Holothuria atra and Stichopus chloronotus populations of The Great Barrier

Reef. Marine and Freshwater Research.52:205-215.

Vonk JA, Christianen MJA, Stapel J. 2008. Redefining the trophic importance of seagrass for fauna in tropical Indo-Pacific meadows. EstCoast Shelf Sci. 79:653-660.

Waycott M, Collier C, McMahon K, Ralph P, McKeinze L, Udy J, Grech A. 2006. Vulnerability of seagrasses in the Great Barrier Reef to climate change. Department of Primary Industries and Fisheries, Queensland. hlm 193-235.

29 Yokoyama H. 2013. Growth and food source of the sea cucumber Apostichopus

japonicus cultured below fish cages: potential for integrated multitrophic Aquaculture. aquaculture. 372-375:28-38.

Yusron E. 2007. Sumberdaya teripang (Holothuroidea) di perairan Pulau Moti-Maluku Utara. Oseanologi dan Limnologi di Indonesia. 33:111-121.

Yusron E. 2009. Keanekaragaman jenis teripang (Holothuroidea) di perairan Minahasa Utara Sulawesi Utara. Oseanologi dan Limnologi Indonesia. 35(1):19-28.

30

Lampiran 1 Jenis teripang yang ditemukan di daerah padang lamun Pulau Wanci

Keterangan: a = Holothuria atra b = Holothuria scabra c = Holothuria pervicax d = Holothuria hilla e = Stichopus hermanni f = Stichopus variegatus g = Synapta maculata

31 Lampiran 2 Morfologi lamun

32

Morfologi tiap jenis lamun (Azkab, 1999)

Enhalus acoroides (Linneaus f.) Royle

33

Halophilaovalis (R. Brown) Hooker f.

34

Thalassodendron ciliatum (Forsskal) den Hartog

35

Thalassia hemprichii (Ehrenberg) Ascherson

Lampiran 3. Hasil perhitungan parameter lingkungan, kerapatan jenis lamun, dan kepadatan jenis teripang

Nilai parameter fisika-kimia di padang lamun Pulau Wanci

Stasiun Sub stasiun Suhu Salinitas PH Nitrat Fosfat DO Kec. Arus Parameter Fisika-Kimia Perairan

I 1 2 29 29 28 29 6,5 0,027 0,016 6,2 7 0,028 0,016 6,6 0,047 0,047 3 31 29 7 0,028 0,015 4,9 0,045 II 1 2 29 31 29 29 6,5 0,034 0,016 4,9 7 0,028 0,015 5,7 0,044 0,044 3 31 30 7,5 0,027 0,008 5,3 0,043 III 1 2 30 31 30 30 7,5 0,030 0,014 4,9 7 0,028 0,016 5,7 0,050 0,053 3 31 31 7,5 0,031 0,015 7 0,051 IV 1 2 30 31 30 31 7.5 0,036 0,021 7,8 7 0,038 0,013 7,8 0,059 0,061 3 32 32 8 0,029 0,019 7,4 0,057

36

Nilai parameter substrat di padang lamun Pulau Wanci

Stasiun Sub stasiun Pasir (%) Parameter Fisika-Kimia Substrat Debu (%) Liat (%)

I 1 2 87,86 86,59 0,16 0,20 11,97 13,21 3 85,44 0,19 14,36 II 1 2 91,14 74,54 0,13 0,32 25,14 8,73 3 93,60 0,11 6,30 III 1 2 96,40 85,59 3,26 0,18 14,23 0,35 3 93,40 0,11 6,49 IV 1 2 93,85 88,54 2,75 0,17 11,30 3,40 3 80,94 17,25 1,82

Hasil perhitungan kerapatan jenis lamun Pulau Wanci

Stasiun Jenis Stasiun Sub 1 Sub Stasiun 2 Sub Stasiun 3 Kerapatan (ind/m²) STDEV I C. rotundata 516 380 936 611 167 T. hemprichii 680 1672 432 928 379 H. uninervis 1064 0 912 659 332 H. ovalis 152 164 0 105 53 E. acoroides 0 168 168 112 56 II C. rotundata 516 176 572 421 124 T. hemprichii 984 0 936 640 320 H. uninervis 696 820 540 685 81 H. ovalis 192 76 0 89 56 E. acoroides 188 512 332 344 94 III C. rotundata 0 284 368 217 111 T. hemprichii 212 552 536 433 111 H. uninervis 836 860 636 777 71 E. acoroides 604 308 388 433 88 IV C. rotundata 0 0 396 132 132 T. hemprichii 764 756 792 771 11 H. uninervis 1304 976 668 983 184 T. ciliatum 0 0 312 104 104 S. isoetifolium 356 0 276 211 108

37 Hasil Perhitungan kepadatan jenis teripang di padang lamun Pulau Wanci

Stasiun Jenis Stasiun Sub 1 Sub Stasiun 2 Sub Stasiun 3 Kepadatan (ind/m²) STDEV I H. atra 0,60 0,12 0,32 0,35 0,14 S. maculata 0,20 0,08 0,12 0,13 0,04 H. scabra 0 0,04 0 0,01 0,01 S. hermanni 0 0,04 0,08 0,04 0,02 H. pervicax 0 0 0,12 0,04 0,04 H. hilla 0,04 0,12 0,04 0,07 0,03 S. variegatus 0,08 0 0 0,03 0,03 II H. atra 0,08 0,16 0,28 0,17 0,06 S. maculata 0,08 0,20 0,2 0,16 0,04 S. variegatus 0 0 0,04 0,01 0,01 III H. atra 0,04 0,12 0,04 0,07 0,03 IV H. atra 0,32 0,40 0,24 0,32 0,05 S. maculata 0,08 0,08 0 0,05 0,03 S. hermanni 0 0 0,08 0,03 0,03

Lampiran 4 Lokasi Penelitian Stasiun 1

38 Stasiun 3

Stasiun 4

Lampiran 5 Transek Pengambilan Sampel Lamun dan Teripang Transek plot pengambilan contoh lamun

39 Transek plot pengambilan contoh teripang

40

Dokumen terkait