• Tidak ada hasil yang ditemukan

TINJAUAN PUSTAKA 2.1 BIODIESEL

2.2.2 Dimethyl Carbonate (DMC)

Transesterifikasi dapat dilakukan baik menggunakan pelarut organik atau dalam media bebas pelarut. Contoh pelarut organik non-polar yang sangat baik untuk minyak yaitu heksana [34]. Tujuan penggunaan pelarut organik untuk transesterifikasi yaitu untuk memastikan campuran reaksi bersifat homogen, mengurangi viskositas campuran reaksi sehingga meningkatkan laju difusi dan dapat mengurangi masalah perpindahan massa di sekitar enzim [35], untuk meningkatkan stabilisasi enzim sehingga memungkinkan untuk digunakan berulang kali [36], dan juga meningkatkan kelarutan alkohol sehingga dapat mengurangi efek inaktivasi alkohol dan gliserol pada aktivitas lipase [37].

Dimetil karbonat (DMC) dihasilkan dari metanol, karbon monoksida dan oksigen, merupakan senyawa serbaguna dibandingkan dengan metanol dan metil asetat dilihat dari kereaktifan kimia, sifat fisik, dan lebih ramah lingkungan [16]. Dimetil karbonat digunakan sebagai pelarut polar yang baik dan resin fungsional dan intermediet kimia untuk berbagai jenis senyawa organik [38].

Su et al. (2007) telah melaporkan produksi biodiesel menggunakan dimetil karbonat (DMC) sebagai akseptor asil, yang bisa menghilangkan resiko deaktivasi lipase yang disebabkan oleh alkohol rantai pendek. Selain itu, reaksi antara minyak dan DMC tidak dapat kembali, dan karena itu meningkatkan kecepatan reaksi dan meningkatkan hasil biodiesel [19,39]

Untuk meningkatkan aktivitas enzim dan konversi biodiesel, telah dilaporkan studi dari akseptor asil selain alkohol. Dimetil karbonat (DMC) adalah sebuah alternatif untuk metanol sebagai akseptor asil dan bahan kimia ramah lingkungan karena sifat netral, tidak berbau, tidak korosif dan tidak beracun [15]. Hal yang paling signifikan dari semua itu, tidak ada gliserol yang diproduksi selama proses transesterifikasi minyak dan DMC dalam pembuatan biodiesel [16].

Seperti proses ekstraksi reaktif sederhana tanpa katalis tambahan mungkin sangat mengurangi langkah-langkah pengolahan dan biaya produksi biodiesel. Dalam hal itu, n-heksana digunakan sebagai co-solvent untuk mempercepat transesterifikasi in situ. Namun, n-heksana tidak menguntungkan bagi aktivitas lipase serta pemisahan produk. Untuk menghindari penggunaan tambahan pelarut ekstraksi dan meningkatkan stabilitas lipase, DMC mungkin menjadi kandidat yang lebih baik dan sangat menjanjikan yang dapat digunakan sebagai substitusi metanol untuk akseptor asil dan pelarut ekstraksi pada saat yang sama dalam produksi biodiesel [16,40]. Sifat-sifat fisika dan kimia dimetil karbonat dapat dilihat pada tabel 2.4.

Tabel 2.4 Sifat-Sifat Fisika dan Kimia Dimetil Karbonat [41] Berat molekul 90,08 g/mol

Wujud Cairan tak berwarna Titik didih 90 oC (194 oF) Titik leleh 2 oC (35,6 oF)

Spesific gravity 1,069 pada 20 oC

Kelarutan Larut dalam air dingin, air panas

Untuk produksi skala industri, bagaimanapun harus dipertimbangkan bahwa jika pelarut memiliki manfaat, itu akan menjadi solusi yang memperkenalkan masalah lain seperti pengurangan kapasitas (sebagai pelarut membutuhkan volume), isu lingkungan (toksisitas, emisi) dan biaya (pemulihan dan kerugian). Isu-isu negatif harus diimbangi dengan efek positif [42].

2.2.3 Novozyme 435

Katalis digunakan untuk meningkatkan kecepatan reaksi dan nilai yield. Klasifikasi katalis dapat berupa alkali, asam dan enzim [43]. Reaksi transesterifikasi dapat dikatalisasi baik dengan katalis homogen maupun heterogen [44]. Katalis yang sering digunakan dalam produksi biodiesel adalah katalis homogen (KOH dan NaOH). Namun, penggunaan katalis homogen memiliki kelemahan yaitu pemisahan katalis dari produknyacukup rumit [45].

Sintesis biodiesel biasanya dilakukan dengan transesterifikasi dikatalisis alkali kimia atau asam, yang memungkinkan waktu reaksi singkat dan konversi yang tinggi. Namun, metode ini memerlukan pretreatment terhadap substrat yang berair dan menyebabkan kesulitan dalam memulihkan katalis dan gliserol. Hal ini juga membutuhkan banyak energi dan pengolahan produk limbah. Transesterifikasi

enzimatik dapat menghindari masalah transesterifikasi kimia dengan beroperasi di bawah kondisi moderat dan enzim dapat digunakan kembali. Selain itu, tidak menghasilkan limbah [38].

Penggunaan katalis heterogen dalam produksi biodiesel dapat mengatasi kelemahan yang dimiliki oleh katalis homogen, seperti reaksi enzimatik memiliki keuntungan dari konsumsi energi yang rendah, kondisi reaksi ringan dan ramah terhadap lingkungan. Pemisahan katalis heterogen dari produknya cukup sederhana yaitu dengan menggunakan penyaringan [40,46].

Lipase telah digunakan pada tingkat industri untuk berbagai aplikasi dalam industri pengolahan makanan, farmasi dan kosmetik. Dengan kemampuannya untuk mengkatalisis berbagai reaksi, lipase adalah katalis yang cocok untuk transesterifikasi berbagai bahan baku, bahkan bahan baku dengan nilai asam tinggi, yang dianggap sebagai bahan baku berkualitas rendah [7].

Penggunaan Immobilized Lipases (ILs) dalam proses transesterifikasi minyak merupakan proses yang menjanjikan karena ILs lebih toleran terhadap pelarut organik, panas dan kekuatan geser serta lebih mudah dipulihkan daripada lipase bebas. Namun, biaya menjalankan proses ini masih lebih tinggi daripada katalis kimia, seperti NaOH dan H2SO4. Untuk mengatasi hal ini, biaya dapat dikurangi

dengan meningkatkan masa pakai lipase selama proses transesterfikasi. Untuk mencapai tujuan tersebut, pelarut dapat digunakan untuk mencegah pencucian lipase dan menghilangkan efek inhibisi alkohol (metanol biasanya) dan gliserol [12].

Salah satu jenis enzim lipase terimmobilisasi yang telah banyak digunakan dalam produksi biodiesel yaitu Novozym 435. Novozym 435 dapat digunakan untuk mengkatalisasi transesterifikasi dan reaksi hidrolisis untuk produksi biodiesel. Novozym 435 memiliki struktur berpori dan lebih sensitif terhadap perubahan rasio mol serta dapat mencapai konversi yang tinggi dengan rasio mol, temperatur dan jumlah katalis yang lebih rendah [21]. Sifat-sifat Novozym 435 dapat dilihat pada tabel 2.5 berikut.

Tabel 2.5 Sifat Biokatalis Novozym 435 [21]

Sifat katalis Candida antartica lipase B (CALB) bergerak di resin akrilik

Sifat fisik Berbentuk manik-manik bulat berwarna putih Distribusi ukuran partikel :

d10 (µm) 252

d50 (µm) 472

d90 (µm) 687

Luas permukaan BET (m2/g) 81,6 Volume pori total (cm3/g) 0,45 Diameter pori rata-rata (nm) 17,7 Densitas (g/cm3) 1,19 Porositas 0,349 Kapasitas asam (mmol/g) 0,436

Kehadiran kadar air secara signifikan dalam proses sintesis dapat mempengaruhi laju reaksi dan hasil. Air dapat mempengaruhi aktivitas katalitik dan stabilitas lipase. Dengan demikian diperlukan kadar air minimum dalam sistem untuk menjaga aktivitas enzim. Hal ini dikarenakan daerah antarmuka yang tersedia umumnya menentukan aktivitas enzim lipase. Kadar air terlalu tinggi dapat menyebabkan penurunan konsentrasi akseptor asil dalam sistem dan peningkatan hidrolisis gliserida untuk membentuk asam lemak. Akibatnya, jelas tingkat transesterifikasi dan hasil biodiesel menjadi lebih rendah [12].

Dokumen terkait