• Tidak ada hasil yang ditemukan

BAB 3 Metode Penelitian

3.3 Flowchart pada mikrokontroller

mulai Inisialisasi port Baca sensor accelerometer Kirim ke PC via port serial

Tampilkan Di PC

Alur kerja diagram alir adalah sebagai berikut: 1. Start dimulainya program

2. Pertama-tama dilakukan untuk inisialisasi port, proses ini berfungsi untuk mendefenisikan pin pin I/O mikrokontroller yang akan digunakan dalam rangkaian.

3. Proses pembacaan sensor accelerometer mpu6050

4. Setelah proses pembacaan sensor maka hasil pembacaan akan dikirim ke PC melalui port serial yang kemudian akan ditampilkan pada PC

BAB 4

PENGUJIAN ALAT DAN PROGRAM

4.1 Pengujian Rangkaian

4.1.1 Pengujian Rangkaian Mikrokontroller ATMega8535

Pengujian pada rangkaian mikrokontroller ATMega8535 ini dapat dilakukan dengan menghubungan rangkaian ini dengan rangkaian power supply sebagai sumber tengangan. Kaki 40 dihubungkan dengan sumber tegangan 5 volt, sedangkan kaku 20 dihubungkan dengan ground. Kemudian tegangan pada kaki 40 diukur dengan menggunakan Voltmeter. Dari hasil pengujian didapatkan tegangan pada kaki 40 sebesar 4,9 Volt. Langkah selanjutnya adalah memberikan program sederhana pada mikrokontroller ATMega8535, program yang diberikan adalah sebagai berikut

#include <mega8535.h> #include <delay.h> #include <stdio.h> While (1)

{

// place your code here While ( ir == 1) {}; While ( ir == 0) { delay_us(100); count ++; } }

KYL Transmiter

KYL Receiver

4.1.2 Pengujian Sensor Accelerometer

Sensor ini bekerja dengan sangat baik, sesuai dengan datasheet yang dikeluarkan pihak pabrikan. Sensor ini sudah menjadi sensor standar internasional. Pengujian sensor ini menggunakan software delphi 7.

4.1.3 Pengujian Modul Kyl 1020-U

Pengujian terhadap modul wireless ini dilakukan dengan melakukan pengiriman data dari transmiter ke receiver, kemudian data yang dikirim dibandingkan dengan data yang diterima. Model pengujian yang lain adalah dengan menguji kemampuan daya pancar modul wireless tersebut dengan memberikan variasi jarak antara transmiter dengan receiver.

Gambar 4.1 Bagan Pengambilan data dari Wireless KYL

Untuk pengujian dilakukan dengan cara menampilkan di layar PC yang ada pada bagian transmiter (pengirim). Dari hasil pengamatan antara data yang tampil di layar PC di peroleh bahwa data yang dapat terkirim adalah:

4.1 Tabel Pengujian wireless Jarak (m) Hasil pengiriman

10 Terkirim 20 Terkirim 30 Terkirim 40 Terkirim 50 Terkirim 60 Terkirim 70 Terkirim 80 Terkirim 90 Terkirim

100 Terkirim 110 Tidak Terkirim 120 Tidak Terkirim

Dari data diatas diketahui bahwa hasil dari pengujian wireless ini dapat menerima data sejauh 100 meter.

4.2 Pengujian Keseluruhan Rangkaian

Pengujian sistem secara keseluruhan ini dilakukan dengan menggabungkan semua peralatan dalam sebuah sistem yang terintegrasi. Tujuannya untuk mengetahui bahwa rangkaian yang dirancang telah bekerja sesuai yang diharapkan, lalu diberi arus melalui baterai 9 volt diteruskan kerangkaian system minimun dan rangkaian wireless KYL 1020-U, dan PC.

Sebagai pengujian alat ini, dilakukan pengukuran dengan meletakkan system mininum dibagian depan mobil, mobil yang digunakan adalah daihatsu terrios 2013 di Jalan Universitas depan Gedung Fasilkom-TI USU sampai di depan Fakultas Kedokteran (pintu1) USU dengan jarak 404,34m. Berikut adalah hasil dari pengujian alat ini yang dilakukan berulang sebanyak 5 kali:

1. Hasil pengujian getaran mobil pertama

Grafik 1. Grafik hubungan accelometer dengan waktu pada mobil daihatsu terrios

Dari grafik diatas dapat dilihat bahwa getaran yang terjadi pada mobil daihatsu terrios ketika melewati gundukan atau sering disebut polisi tidur mengalami percepatan sebessar 1,2 m/s2 pada gundukan setebal 5 cm.

Pada grafik diatas diketahui bahwa jarak antar gundukan pertama dengan gundukan kedua ialah 321m atau 0,321 km. Dimana jarak tempuh antar gundukan ialah 83 sekon dengan kecepatan secara teori 20km/h.

s = 0,321 km t = 69 s = = 0,019 h

v = =

= 16,89 km/h

maka ralat yang terjadi pada alat adalah: % ralat =

= × 100 %

2. Pengujian percepatan mobil terrios kedua kali

Grafik 2. Grafik hubungan accelometer dengan waktu pada mobil daihatsu terrios 2

Pada grafik diatas didapatkan waktu yang ditempuh mobil pada saat melalui gundukan pertam sampai digundukan kedua adalah 66 s dengan jarak antar gundukan 321m atau 0,321 km dengan kecepatan teori konstan 20 km/h/

s = 0,321 km t = 66 s =

= 0,0183 h v = =

= 17,54 km/h

maka ralat yang terjadi pada alat adalah: % ralat =

= × 100 %

3. Pengujian percepatan mobil terrios ke-3

Grafik 3. Grafik hubungan accelometer dengan waktu pada mobil daihatsu terrios 3

Pada grafik diatas didapatkan waktu yang ditempuh mobil pada saat melalui gundukan pertam sampai digundukan kedua adalah 65 s dengan jarak antar gundukan 321m atau 0,321 km dengan kecepatan teori konstan 20 km/h/

s = 0,321 km t = 65 s = = 0,018 h

v = =

= 17,83 km/h

maka ralat yang terjadi pada alat adalah: % ralat =

= × 100 % = 10,8%

4. Pengujian percepatan mobil terrios ke-3

Grafik 4. Grafik hubungan accelometer dengan waktu pada mobil daihatsu terrios 4

Pada grafik diatas didapatkan waktu yang ditempuh mobil pada saat melalui gundukan pertam sampai digundukan kedua adalah 70 s dengan jarak antar gundukan 321m atau 0,321 km dengan kecepatan teori konstan 20 km/h/

s = 0,321 km t = 70 s =

= 0,0194 h v = =

= 16,54 km/h

% ralat =

= × 100 %

= 17,3%

5. pengujian percepatan mobil terrios ke-5

Grafik 5. Grafik hubungan accelometer dengan waktu pada mobil daihatsu terrios 5

Pada grafik diatas didapatkan waktu yang ditempuh mobil pada saat melalui gundukan pertam sampai digundukan kedua adalah 67 s dengan jarak antar gundukan 321m atau 0,321 km dengan kecepatan teori konstan 20 km/h.

s = 0,321 km t = 67 s =

= 0,0186 h v = =

% ralat =

= × 100 %

= 13,7%

6. Pembesaran grafik getaran mobil di gundukan pertama

Grafik 6. Grafik pembesaran hasil percepatan pada mobil daihatsu terrios

Grafik diatas menunjukkan grafik pembesaran dari data pada grafik satu pada gundukan pertama dengan mengambil data pada saat gundukan terjadi

7. Hasil pengujian Getaran mesin mobil pada mobil daihatsu terrios 2013

Grafik 7. Hubungan accelerometer dengan waktu pada mesin mobil daihatsu terrios

Pengujian getaran mesin dilakukan dengan meletakkan rangkaian alat di mesin mobil dengan merekatkannya pada tali kemudian mobil dihidupkan dengan cara di starter dalam keadaan diam, pada saat mobil tersebut dinyalakan maka dihasilkan getaran percepatan mesin ±0,6 m/s2, pada saat getaran mesin stabil maka percepatannya menjadi ±0,3 m/s2 dan pada saat mobil mulai dimatikan dihasilkan getaran percepatan sebesar ±0,15 m/s2.

Dari data di atas dapat diketahui bahwa sensor dapat membaca getaran mobil pada saat mesin dihidupkan, stabil dan pada saat mobil akan dimatikan.

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan Penelitian yang telah dilaksanakan penulis memperoleh kesimpulan sebagai berikut:

1. Sistem secara umum sudah dapat bekerja sesuai dengan yang diharapkan, berjalan sesuai dengan rancangan yang dibuat. Pada saat mobil melalu polisi tidur di dapat data percepatan pada mobil daihatsu terrios sebesar 1,2 m/s2.

2. Dari hasil yang diperoleh diketahui bahwa sensor accelerometer dapat bekerja sesuai dengan data sheet sehingga diperoleh data berupa percepatan dengan satuan m/s2

3. Jarak jangkauan pengiriman data dengan menggunakan wireless KYL 1020-U data masih dapat diterima dengan baik sejauh 100 m.

5.2 Saran

Beberapa hal yang dapat disarankan dari pelaksanna tugas akhir ini adalah: 1. Untuk perancangan sistem ini lebih lanjut hendaknya digunakan sensor

yang lebih baik untuk mendapatkan hasil yang lebih baik

2. Perlu dilakukan desain ulang pada hardware (perancangan perangkat kerasnya) termasuk pemilihan sensor dan mikrokontrollernya agar didapatkan rangkaian yang lebih sempurna.

3. Untuk perancangan sistem selanjutnya lebih baik menggunakan supply daya yang lebih besar sehingga wireless dapat menangkap signal jauh lebih baik dan dalam jarak yang lebih jauh.

DAFTAR PUSTAKA

Alma’i,Rahman dkk.2009. Aplikasi Sensor Accelerometer Pada Posisi. Semarang. Universitas Diponegoro.

Bejo,Agus.2005. C & AVR Rahasia Kemudahan Bahasa C dalam Mikrokontroller AT-Mega 8535.Edisi Pertama, Yogyakarta,Penerbit Griya Media.

Hibban,Hafizh.2013. Sistem Pengukuran dan Monitoring kecepatan gerak kendaraan bermotor. Riau.Poloteknik caltex riau

Hutahaean,Y Ramses.2012.Getaran Mekanik.Yogyakatya,Penerbit Andi. Mulyanta,Edi.2007.Pengenalan Protokol Jaringan Wireless Komputer Yogyakarta,Andi Yogyakarta.

Rahmat,Rafuddin.2007. Belajar sendiri mikrokontroller AVR dari Atmega 8535 Yogyakarta, Andi Yogyakarta.

Rusli.A.1997. Fisika Dasar 1. Jakarta. P.T Gramedia Pustaka Utama Setiawan,Afrie.2001. Aplikasi Mikrokontroller atmega8535 & atmega 16

Menggunakan Bascom-AVR.Yogyakarta,Andi Yogyakarta.

Syahrul.2012.Mikrokontroller Dengan AVR atmega 8535 (Dengan assembler) Bandung,Informatika.

Susilo,Deddy.2008.48 Jam Kupas tuntas Mikrokontroler MCS51 & AVR. Yogyakarta. Penerbit Andi.

Wardhana,Lingga. 2006. Belajar Sendiri Mikrokontroller AVR Seri atmega 8535 Yogyakarta. C.V. Andi Offset.

Wignall,Athur.dkk.1994.Proyek Jalan. Edisi Keempat. Jakarta.Erlangga. http://wirasetiawan29.wordpress.com/2014/04/06/accelerometer/

http://daytronika.blogspot.com/2011/06/mikrokontroler-atmega-8535.html Solutions Based in Accelerometers, http://www.freescale.com, Maret 2009.

LAMPIRAN A

Program pada mikrokontroler

/******************************************************* This program was created by the

CodeWizardAVR V3.12 Advanced

Project : gelombang Version : Revisi 4 Date : xx/xx/2015 Author : Nisa

Company : Fisika s-1 FMIPA USU 2010 Comments: ganbatte

****************************************************** /#include <mega32a.h

// I2C Bus functions #include <i2c.h> #include <stdlib.h> #include <delay.h> #include <math.h>

// Declare your global variables here

//---// #define DATA_REGISTER_EMPTY (1<<UDRE)

#define RX_COMPLETE (1<<RXC) #define FRAMING_ERROR (1<<FE) #define PARITY_ERROR (1<<UPE)

#define DATA_OVERRUN (1<<DOR) // USART Receiver buffer

#define RX_BUFFER_SIZE 8 char rx_buffer[RX_BUFFER_SIZE]; #if RX_BUFFER_SIZE <= 256

unsigned char rx_wr_index=0,rx_rd_index=0; #else

unsigned int rx_wr_index=0,rx_rd_index=0; #endif

#if RX_BUFFER_SIZE < 256 unsigned char rx_counter=0; #else

unsigned int rx_counter=0; #endif

// This flag is set on USART Receiver buffer overflow bit rx_buffer_overflow;

// USART Receiver interrupt service routine interrupt [USART_RXC] void usart_rx_isr(void) {

char status,data; status=UCSRA; data=UDR;

if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0)

{

#if RX_BUFFER_SIZE == 256

// special case for receiver buffer size=256 if (++rx_counter == 0) rx_buffer_overflow=1; #else

if (rx_wr_index == RX_BUFFER_SIZE) rx_wr_index=0; if (++rx_counter == RX_BUFFER_SIZE) { rx_counter=0; rx_buffer_overflow=1; } #endif } } #ifndef _DEBUG_TERMINAL_IO_

// Get a character from the USART Receiver buffer #define _ALTERNATE_GETCHAR_ #pragma used+ char getchar(void) { char data; while (rx_counter==0); data=rx_buffer[rx_rd_index++]; #if RX_BUFFER_SIZE != 256

if (rx_rd_index == RX_BUFFER_SIZE) rx_rd_index=0; #endif

--rx_counter; #asm("sei") return data; } #pragma used- #endif

// USART Transmitter buffer #define TX_BUFFER_SIZE 8 char tx_buffer[TX_BUFFER_SIZE]; #if TX_BUFFER_SIZE <= 256

unsigned char tx_wr_index=0,tx_rd_index=0; #else

unsigned int tx_wr_index=0,tx_rd_index=0; #endif

#if TX_BUFFER_SIZE < 256 unsigned char tx_counter=0; #else

unsigned int tx_counter=0; #endif

// USART Transmitter interrupt service routine interrupt [USART_TXC] void usart_tx_isr(void) {

if (tx_counter) --tx_counter;

UDR=tx_buffer[tx_rd_index++]; #if TX_BUFFER_SIZE != 256

if (tx_rd_index == TX_BUFFER_SIZE) tx_rd_index=0; #endif

} }

#ifndef _DEBUG_TERMINAL_IO_

// Write a character to the USART Transmitter buffer #define _ALTERNATE_PUTCHAR_

#pragma used+ void putchar(char c) {

while (tx_counter == TX_BUFFER_SIZE); #asm("cli")

if (tx_counter || ((UCSRA & DATA_REGISTER_EMPTY)==0)) {

tx_buffer[tx_wr_index++]=c; #if TX_BUFFER_SIZE != 256

if (tx_wr_index == TX_BUFFER_SIZE) tx_wr_index=0; #endif ++tx_counter; } else UDR=c; #asm("sei") } #pragma used- #endif

// Standard Input/Output functions #include <stdio.h>

//---ADDRESS REGISTER VARIABEL SENSOR---//

#define MPU6050_ADDRESS 0xD0 // Address with end write bit #define MPU6050_RA_XG_OFFS_TC 0x00 //[7] PWR_MODE, [6:1] XG_OFFS_TC, [0] OTP_BNK_VLD

#define MPU6050_RA_YG_OFFS_TC 0x01 //[7] PWR_MODE, [6:1] YG_OFFS_TC, [0] OTP_BNK_VLD

#define MPU6050_RA_ZG_OFFS_TC 0x02 //[7] PWR_MODE, [6:1] ZG_OFFS_TC, [0] OTP_BNK_VLD

#define MPU6050_RA_X_FINE_GAIN 0x03 //[7:0] X_FINE_GAIN #define MPU6050_RA_Y_FINE_GAIN 0x04 //[7:0] Y_FINE_GAIN #define MPU6050_RA_Z_FINE_GAIN 0x05 //[7:0] Z_FINE_GAIN #define MPU6050_RA_SMPLRT_DIV 0x19

#define MPU6050_RA_CONFIG 0x1A

#define MPU6050_RA_GYRO_CONFIG 0x1B #define MPU6050_RA_ACCEL_CONFIG 0x1C #define MPU6050_RA_FF_THR 0x1D

#define MPU6050_RA_FF_DUR 0x1E #define MPU6050_RA_MOT_THR 0x1F #define MPU6050_RA_MOT_DUR 0x20 #define MPU6050_RA_ZRMOT_THR 0x21 #define MPU6050_RA_ZRMOT_DUR 0x22 #define MPU6050_RA_FIFO_EN 0x23 #define MPU6050_RA_I2C_MST_CTRL 0x24

#define MPU6050_RA_I2C_SLV0_ADDR 0x25 #define MPU6050_RA_I2C_SLV0_REG 0x26 #define MPU6050_RA_I2C_SLV0_CTRL 0x27 #define MPU6050_RA_I2C_SLV1_ADDR 0x28 #define MPU6050_RA_I2C_SLV1_REG 0x29 #define MPU6050_RA_I2C_SLV1_CTRL 0x2A #define MPU6050_RA_I2C_SLV2_ADDR 0x2B #define MPU6050_RA_I2C_SLV2_REG 0x2C #define MPU6050_RA_I2C_SLV2_CTRL 0x2D #define MPU6050_RA_I2C_SLV3_ADDR 0x2E #define MPU6050_RA_I2C_SLV3_REG 0x2F #define MPU6050_RA_I2C_SLV3_CTRL 0x30 #define MPU6050_RA_I2C_SLV4_ADDR 0x31 #define MPU6050_RA_I2C_SLV4_REG 0x32 #define MPU6050_RA_I2C_SLV4_DO 0x33 #define MPU6050_RA_I2C_SLV4_CTRL 0x34 #define MPU6050_RA_I2C_SLV4_DI 0x35 #define MPU6050_RA_I2C_MST_STATUS 0x36 #define MPU6050_RA_INT_PIN_CFG 0x37 #define MPU6050_RA_INT_ENABLE 0x38 #define MPU6050_RA_DMP_INT_STATUS 0x39 #define MPU6050_RA_INT_STATUS 0x3A #define MPU6050_RA_ACCEL_XOUT_H 0x3B #define MPU6050_RA_ACCEL_XOUT_L 0x3C #define MPU6050_RA_ACCEL_YOUT_H 0x3D #define MPU6050_RA_ACCEL_YOUT_L 0x3E

#define MPU6050_RA_ACCEL_ZOUT_H 0x3F #define MPU6050_RA_ACCEL_ZOUT_L 0x40 #define MPU6050_RA_TEMP_OUT_H 0x41 #define MPU6050_RA_TEMP_OUT_L 0x42 #define MPU6050_RA_GYRO_XOUT_H 0x43 #define MPU6050_RA_GYRO_XOUT_L 0x44 #define MPU6050_RA_GYRO_YOUT_H 0x45 #define MPU6050_RA_GYRO_YOUT_L 0x46 #define MPU6050_RA_GYRO_ZOUT_H 0x47 #define MPU6050_RA_GYRO_ZOUT_L 0x48 #define MPU6050_RA_EXT_SENS_DATA_00 0x49 #define MPU6050_RA_EXT_SENS_DATA_01 0x4A #define MPU6050_RA_EXT_SENS_DATA_02 0x4B #define MPU6050_RA_EXT_SENS_DATA_03 0x4C #define MPU6050_RA_EXT_SENS_DATA_04 0x4D #define MPU6050_RA_EXT_SENS_DATA_05 0x4E #define MPU6050_RA_EXT_SENS_DATA_06 0x4F #define MPU6050_RA_EXT_SENS_DATA_07 0x50 #define MPU6050_RA_EXT_SENS_DATA_08 0x51 #define MPU6050_RA_EXT_SENS_DATA_09 0x52 #define MPU6050_RA_EXT_SENS_DATA_10 0x53 #define MPU6050_RA_EXT_SENS_DATA_11 0x54 #define MPU6050_RA_EXT_SENS_DATA_12 0x55 #define MPU6050_RA_EXT_SENS_DATA_13 0x56 #define MPU6050_RA_EXT_SENS_DATA_14 0x57 #define MPU6050_RA_EXT_SENS_DATA_15 0x58

#define MPU6050_RA_EXT_SENS_DATA_16 0x59 #define MPU6050_RA_EXT_SENS_DATA_17 0x5A #define MPU6050_RA_EXT_SENS_DATA_18 0x5B #define MPU6050_RA_EXT_SENS_DATA_19 0x5C #define MPU6050_RA_EXT_SENS_DATA_20 0x5D #define MPU6050_RA_EXT_SENS_DATA_21 0x5E #define MPU6050_RA_EXT_SENS_DATA_22 0x5F #define MPU6050_RA_EXT_SENS_DATA_23 0x60 #define MPU6050_RA_MOT_DETECT_STATUS 0x61 #define MPU6050_RA_I2C_SLV0_DO 0x63 #define MPU6050_RA_I2C_SLV1_DO 0x64 #define MPU6050_RA_I2C_SLV2_DO 0x65 #define MPU6050_RA_I2C_SLV3_DO 0x66 #define MPU6050_RA_I2C_MST_DELAY_CTRL 0x67 #define MPU6050_RA_SIGNAL_PATH_RESET 0x68 #define MPU6050_RA_MOT_DETECT_CTRL 0x69 #define MPU6050_RA_USER_CTRL 0x6A

#define MPU6050_RA_PWR_MGMT_1 0x6B #define MPU6050_RA_PWR_MGMT_2 0x6C #define MPU6050_RA_BANK_SEL 0x6D

#define MPU6050_RA_MEM_START_ADDR 0x6E #define MPU6050_RA_MEM_R_W 0x6F

#define MPU6050_RA_DMP_CFG_1 0x70 #define MPU6050_RA_DMP_CFG_2 0x71 #define MPU6050_RA_FIFO_COUNTH 0x72 #define MPU6050_RA_FIFO_COUNTL 0x73

#define MPU6050_RA_FIFO_R_W 0x74 #define MPU6050_RA_WHO_AM_I 0x75

//---END---/

//---FUNGSI-FUNGSI PADA SENSOR---//

void nulis_i2c(unsigned char alamatt,unsigned char regg, unsigned char dataa) { i2c_start(); i2c_write(alamatt | 0); i2c_write(regg); i2c_write(dataa); i2c_stop(); delay_ms(10); }

char baca_i2c(unsigned char alamat,unsigned char reg) {

unsigned char baca; i2c_start(); i2c_write(alamat |0); i2c_write(reg); i2c_start(); i2c_write(alamat |1); baca=i2c_read(0); i2c_stop(); return baca;

}

void tes_i2c() {

unsigned char Datax = 0x00;

do{Datax=baca_i2c(MPU6050_ADDRESS, MPU6050_RA_WHO_AM_I); if(Datax == 0x68) { printf("cek berhasil"); } else { printf("cek gagal"); } delay_ms(1000); } while(Datax!=0x68); }

//setelah sesuai dengan register who am i kita lanjut ke setting register : void setup_mpu6050()

{

//f sample ratenya 1k karena DPLF aktif 1000/1+1 = 500Hz

nulis_i2c(MPU6050_ADDRESS,MPU6050_RA_SMPLRT_DIV,0x01); //Disable FSync, 48Hz DLPF acceleronya bandwith 44 HZ delay 4.9 gyronya bandwith 42Hz delay 4.8Fs 1k

nulis_i2c(MPU6050_ADDRESS,MPU6050_RA_CONFIG,0x03); //Disable gyro self tests, scale of 250 degrees/s

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_GYRO_CONFIG, 0x00); //Disable accel self tests, scale of +-2g, no DHPF

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_ACCEL_CONFIG, 0b00000000);

//Freefall threshold of |0mg|

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_FF_THR, 0x00); //Freefall duration limit of 0

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_FF_DUR, 0x00); //Motion threshold of 0mg

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_MOT_THR, 0x00); //Motion duration of 0s

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_MOT_DUR, 0x00); //Zero motion threshold

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_ZRMOT_THR, 0x00); //Zero motion duration threshold

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_ZRMOT_DUR, 0x00); //Disable sensor output to FIFO buffer

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_FIFO_EN, 0x00); //i2c MST CLOCK 348 kHz divider 23 dari 8Mhz mpu6050 internal clk nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_MST_CTRL, 0x00); //Setup AUX I2C slaves

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV0_ADDR, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV0_REG, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV0_CTRL, 0x00);

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV1_ADDR, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV1_REG, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV1_CTRL, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV2_ADDR, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV2_REG, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV2_CTRL, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV3_ADDR, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV3_REG, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV3_CTRL, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_ADDR, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_REG, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_DO, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_CTRL, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_DI, 0x00); //MPU6050_RA_I2C_MST_STATUS //Read-only

//Setup INT pin and AUX I2C pass through

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_INT_PIN_CFG, 0x00); //Enable data ready interrupt

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_INT_ENABLE, 0x00); //Slave out, dont care

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV0_DO, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV1_DO, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV2_DO, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV3_DO, 0x00); //More slave config

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_I2C_MST_DELAY_CTRL, 0x00);

//Reset sensor signal paths

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_SIGNAL_PATH_RESET, 0x00);

//Motion detection control

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_MOT_DETECT_CTRL, 0x00);

//Disables FIFO, AUX I2C, FIFO and I2C reset bits to 0

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_USER_CTRL, 0x00); //Sets clock source to gyro reference w/ PLL

nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0b00000010);

//Controls frequency of wakeups in accel low power mode plus the sensor standby modes nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_PWR_MGMT_2, 0x00); nulis_i2c(MPU6050_ADDRESS, MPU6050_RA_FIFO_R_W, 0x00); printf("setup done"); delay_ms(1000); }

//setelah menulis register-register ini sensor data sensor siap di akuisisi. pertama akusisi data accelero

//contoh programnya seperti dibawah: void akusisi_accel()

{

axx_xh = baca_i2c(MPU6050_ADDRESS,MPU6050_RA_ACCEL_XOUT_H); axx_xl = baca_i2c(MPU6050_ADDRESS,MPU6050_RA_ACCEL_XOUT_L); axx_yh = baca_i2c(MPU6050_ADDRESS,MPU6050_RA_ACCEL_YOUT_H);

axx_yl = baca_i2c(MPU6050_ADDRESS,MPU6050_RA_ACCEL_YOUT_L); axx_zh = baca_i2c(MPU6050_ADDRESS,MPU6050_RA_ACCEL_ZOUT_H); axx_zl = baca_i2c(MPU6050_ADDRESS,MPU6050_RA_ACCEL_ZOUT_L); axx_x = ((axx_xh<<8)|axx_xl)/100; axx_y = ((axx_yh<<8)|axx_yl)/100; axx_z = ((axx_zh<<8)|axx_zl)/100;

axx_sudut_x =(float) 57.295*atan((float)axx_y/ sqrt(pow((float)axx_z,2)+pow((float)axx_x,2))); axx_sudut_y =(float) 57.295*atan((float)-axx_x/ sqrt(pow((float)axx_z,2)+pow((float)axx_y,2))); axx_sudut_z =(float) 57.295*atan(sqrt(pow((float)axx_x,2)+pow((float)axx_y,2))/(float)axx_z); } //---END---// void main(void) {

// Declare your local variables here // Input/Output Ports initialization // Port A initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | (0<<DDA2) | (0<<DDA1) | (0<<DDA0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | (0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0);

// Port B initialization

DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) | (0<<DDB2) | (0<<DDB1) | (0<<DDB0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | (0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0);

// Port C initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRC=(0<<DDC7) | (0<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | (0<<DDC2) | (0<<DDC1) | (0<<DDC0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | (0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0);

// Port D initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | (0<<DDD2) | (0<<DDD1) | (0<<DDD0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | (0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0);

// Timer/Counter 0 initialization // Clock source: System Clock // Clock value: Timer 0 Stopped // Mode: Normal top=0xFF // OC0 output: Disconnected

TCNT0=0x00; OCR0=0x00;

// Timer/Counter 1 initialization // Clock source: System Clock // Clock value: Timer1 Stopped // Mode: Normal top=0xFFFF // OC1A output: Disconnected // OC1B output: Disconnected // Noise Canceler: Off

// Input Capture on Falling Edge // Timer1 Overflow Interrupt: Off // Input Capture Interrupt: Off // Compare A Match Interrupt: Off // Compare B Match Interrupt: Off

TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) | (0<<WGM10); TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | (0<<CS12) | (0<<CS11) | (0<<CS10); TCNT1H=0x00; TCNT1L=0x00; ICR1H=0x00; ICR1L=0x00; OCR1AH=0x00; OCR1AL=0x00; OCR1BH=0x00; OCR1BL=0x00;

// Timer/Counter 2 initialization // Clock source: System Clock // Clock value: Timer2 Stopped // Mode: Normal top=0xFF // OC2 output: Disconnected ASSR=0<<AS2;

TCCR2=(0<<PWM2) | (0<<COM21) | (0<<COM20) | (0<<CTC2) | (0<<CS22) | (0<<CS21) | (0<<CS20);

TCNT2=0x00; OCR2=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization

TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | (0<<OCIE1B) | (0<<TOIE1) | (0<<OCIE0) | (0<<TOIE0);

// External Interrupt(s) initialization // INT0: Off

// INT1: Off // INT2: Off

MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00); MCUCSR=(0<<ISC2);

// USART initialization

// Communication Parameters: 8 Data, 1 Stop, No Parity // USART Receiver: On

// USART Transmitter: On // USART Mode: Asynchronous // USART Baud Rate: 9600

UCSRA=(0<<RXC) | (0<<TXC) | (0<<UDRE) | (0<<FE) | (0<<DOR) | (0<<UPE) | (0<<U2X) | (0<<MPCM);

UCSRB=(1<<RXCIE) | (1<<TXCIE) | (0<<UDRIE) | (1<<RXEN) | (1<<TXEN) | (0<<UCSZ2) | (0<<RXB8) | (0<<TXB8);

UCSRC=(1<<URSEL) | (0<<UMSEL) | (0<<UPM1) | (0<<UPM0) | (0<<USBS) | (1<<UCSZ1) | (1<<UCSZ0) | (0<<UCPOL);

UBRRH=0x00; UBRRL=0x47;

// Analog Comparator initialization // Analog Comparator: Off

// The Analog Comparator's positive input is // connected to the AIN0 pin

// The Analog Comparator's negative input is // connected to the AIN1 pin

ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | (0<<ACIC) | (0<<ACIS1) | (0<<ACIS0);

SFIOR=(0<<ACME);

// ADC initialization // ADC disabled

ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (0<<ADPS2) | (0<<ADPS1) | (0<<ADPS0);

// SPI initialization // SPI disabled

SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | (0<<CPHA) | (0<<SPR1) | (0<<SPR0);

// TWI initialization // TWI disabled

TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE);

// Bit-Banged I2C Bus initialization // I2C Port: PORTA

// I2C SDA bit: 0 // I2C SCL bit: 1 // Bit Rate: 100 kHz

// Note: I2C settings are specified in the

// Project|Configure|C Compiler|Libraries|I2C menu. i2c_init

// Global enable interrupts #asm("sei") tes_i2c(); setup_mpu6050(); while (1) { akusisi_accel(); (data_raw*16,384/32000)*9,81; printf("%dA%dB%dC%dD",axx_x,axx_y,axx_z,); delay_ms(10); } }

Program tampilan PC dalam Software delphi

unit Unit1; interface uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls, CPort, DB, ADODB, ExtCtrls, DBCtrls, Grids, DBGrids, RpCon, RpConDS, RpDefine, RpRave, SUIForm, TeEngine, Series, TeeProcs, Chart; type TForm1 = class(TForm) ComPort1: TComPort; GroupBox1: TGroupBox; Label1: TLabel; Label2: TLabel; Label3: TLabel; Edit1: TEdit; Edit2: TEdit; Edit3: TEdit; GroupBox2: TGroupBox; Button1: TButton; Button2: TButton; Button4: TButton; Label4: TLabel; ListBox1: TListBox; Edit4: TEdit; Label5: TLabel; Button3: TButton; GroupBox3: TGroupBox; DBGrid1: TDBGrid; DBNavigator1: TDBNavigator; ADOConnection1: TADOConnection; ADOTable1: TADOTable; DataSource1: TDataSource; Label6: TLabel; Label7: TLabel; Timer1: TTimer; Button5: TButton; RvProject1: TRvProject; RvDataSetConnection1: TRvDataSetConnection; suiForm1: TsuiForm; Chart1: TChart; Series1: TFastLineSeries; Timer2: TTimer;

Timer3: TTimer; Button6: TButton;

Series2: TFastLineSeries; Series3: TFastLineSeries; Series4: TFastLineSeries;

procedure Button4Click(Sender: TObject); procedure Button3Click(Sender: TObject); procedure FormDestroy(Sender: TObject);

procedure ComPort1RxChar(Sender: TObject; Count: Integer); procedure Button1Click(Sender: TObject);

procedure Button2Click(Sender: TObject); procedure FormCreate(Sender: TObject); procedure Timer1Timer(Sender: TObject); procedure Timer2Timer(Sender: TObject); procedure Button5Click(Sender: TObject); procedure Timer3Timer(Sender: TObject); procedure Button6Click(Sender: TObject); private { Private declarations } public { Public declarations } end; var Form1: TForm1; implementation {$R *.dfm}

procedure TForm1.Button4Click(Sender: TObject); begin

comport1.ShowSetupDialog; end;

procedure TForm1.Button3Click(Sender: TObject); begin

close; //close aplikasi end;

procedure TForm1.FormDestroy(Sender: TObject); begin

//jika form langsung ditutup,comport otomatis nutup sendiri if comport1.Connected = true then

begin

comport1.Connected := false; end;

/////////////////////////////////////////////////////////////////////////////////

//////////////////////////INTI PROGRAM/////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////

procedure TForm1.ComPort1RxChar(Sender: TObject; Count: Integer); var A, B, C, D, DataA, DataB, DataC, DataD :string;

s :TstringList

D,E,F,DataD,DataE,DataF,,dan seterusnya.. begin

{cari string 'A', jika ketemu string 'A' maka string SEBELUM 'A' atau data murni akan di taruh dilistbox1 dan string 'A' di delimiter(dihapus). data dilistbox1 akan diambil dan ditampilkan ke edit1, begitu berurutan untuk data setelahnya. kok bisa? ya karena nantinya format pengiriman datanya kan untuk misal 4 sensor suhu LM35 adalah

30A40B50C60D jadi dari format itu kan yg dimasukkan ke edit1 adalah 30 aja,sedangkan string pengenal 'A'

Dokumen terkait