• Tidak ada hasil yang ditemukan

Gravimeter Jenis Tidak Stabil

Dalam dokumen Metode Gravity (Halaman 40-51)

Instrumen dalam Metode Gravity

2. Gravimeter Jenis Tidak Stabil

Dalam gravimeter tidak stabil pula, anjakan yang disebabkan oleh gravity akan diperbesarkan oleh daya ketiga. Sebagai contoh, gravimeter tak stabil ialah gravimeter LaCoste Romberg dan Worden Gravimeter.

1. Gravitymeter LaCoste & Romberg Model G-1177

Gravimeter ini terdiri daripada satu alang bersangga yang mempunyai jisim dan dibantu oleh spring yang melekat betul-betul diatas penyangga. Magnitude momen spring keatas alang bergantung kepada pemanjangan spring dan sin sudut θ. Jika gravity bertambah, alang akan lebih tertekan dan pemanjangan spring bertambah. Walaupun daya pulih spring bertambah, sudut θ menjadi lebih kecil θ’. Dengan menggunakan rekaan geometri spring dan alang yang sesuai, magnitud penambahan momen pulih oleh kenaikan gravity boleh diperkecilkan. Spring biasa mempunyai nilai pengukuran yang agak kecil.

Namun demikian dengan menggunakan spring ‘panjang sifat’ yaitu spring yang bertensi semasa dibina sehingga akan daya pulih berkadar terus kepada panjang fisikal spring dan bukannya kepada pemanjangannya. Alat ini boleh ditinggikan kepekaannya dengan nilai pengukuran yang tinggi. Bacaan diambil dengan mengembalikan alang ke kedudukan mengufuk dengan mengubah kedudukan menegak spring menggunakan skru mikrometer. Kesan termal dikawal oleh sistem thermostat yang digerakkan oleh kuasa baterai. Alat ini mempunyai nilai pengukuran 5000 ug.

Gambar 1. Gravity meter jenis Lacoste & Romberg seri G – 1177

Pada proses akuisisi data di lapangan, digunakan alat gravity meter jenis Lacoste & Romberg seri G – 1177 untuk menentukan nilai gravitasi bumi pada titik pengamatan.

Gambar 2. Sketsa gambar gravity meter jenis Lacoste & Roberg seri G – 1177

Keterangan dan penjelasan gambar : 1. Thermo Start

Lampu indikator sebagai penunjuk bahwa alat telah siap digunakan pada suhu mencapai 55o C lampu akan menyala dan saat suhu berkurang maka lampu akan mati.

2. Knop Sentring (Level)

Berfungsi mengatur sifat datar (leveling) alat terhadap bumi. Knop ini dipergunakan dengan cara memutarnya searah jarum jam atau berlawanan jarum jam.

3. Switch On – Off

Ungkai aktifasi alat. Berfungsi untuk mengaktifkan alat. Terdiri dari dua tungkai. Tungkai sebelah kanan berfungsi menyalakan lampu yang terdapat pada alat dan tungkai sebalah kiri sebagai tungkai aktifasi alat. Jika telah “On” maka alat sipa digunakan.

4. Pengunci

Pada posisi mengunci, maka pengunci diputar ke arah kanan . sedangkan untuk membukanya, diputar ke arah kiri berlawanan dengan arah jarum jam hingga penuh.

5. Monitor Pembacaan

Layar yang berisikan data – data hasil pembacaan alat, berupa : temperatur alat, nilai pembacaan standar alat dan arus pada alat.

6. Tabung Leveling

Berfungsi sebagai indikator leveling alat terhadap permukaan. Bagian ini menggunakan prinsip kerja dari waterpas.

7. Teropong Pembacaan

Berfungsi sebagai teropong pembacan alat secara manual. Pembacaan dilakukan dengan membaca benang halus hingga berada di tengah – tengah kolom pembacaan.

8. Pemutar Halus

Penggerak standar pembacaan alat yang ditunjukkan dengan angka, yang akan bergerak bersamaan dengan pergerakan dari pemutar halus ini.

9. Jarum Leveling

Jarum penunjuk tingkat kedataran alat dengan permukaan yang akan bergerak sama dengan tabung leveling.

10. Kolom Pembacaan Alat

Adalah nilai yang menunjukkan besarnya pembacaan pada alat yang didapati dari standar nilai alat.

11. Aki

Sebagai sumber energi untuk alat.

2. Gravimeter Worden

Worden Gravimeter adalah alat yang digunakan untuk pengukuran perbedaan gravity bumi, Rekaan bagi alat tersebut pengukuran perbedaan gravity yaitu 0.01 miligal atau 1 inci dalam perubahan ketinggian dapat dilakukan. Alat Worden Gravimeter yang istimewa ini masih dipakai pada masa kini dan alat ini mudah dibawa serta pengukurannya memiliki ketelitian yang tinggi. Alat Worden Gravitimeter ini hanyalah satu-satunya alat yang telah mencecah 1500 unit dalam pengeluarannya.

Gambar : Worden Gravimeter

http://md-haikal.blogspot.com/2014/04/instrumen-dalam-metode-gravity.html

Metode Gravity

1. Alat Gravity yang biasa digunakan di darat dan di laut a. gravimeter

sebuah cara mendapatkan posisi dan sarana yang sangat akurat menentukan perubahan relatif dalam ketinggian. Gravimeters dirancang untuk mengukur perbedaan yang sangat kecil di medan gravitasi dan sebagai hasilnya merupakan instrumen yang sangat halus. Gravimeter ini rentan terhadap shock mekanis selama transportasi dan penanganan.

b. Gravitymeter LaCoste & Romberg Tipe G

Metode ini umumnya digunakan dalam eksplorasi minyak untuk menemukan struktur yang merupakan jebakan minyak (oil trap), dan dikenal sebagai metode awal saat akan melakukan eksplorasi daerah yang berpotensi hidrokarbon. Disamping itu metode ini juga banyak dipakai dalam eksplorasi mineral dan lain-lain. Meskipun dapat dioperasikan dalam berbagai macam hal tetapi pada prinsipnya metode ini dipilih karena kemampuannya dalam membedakan rapat massa suatu material terhadap lingkungan sekitarnya. Dengan demikian struktur bawah permukaan dapat diketahui. Pengetahuan tentang struktur bawah permukaan ini penting untuk perencanaan langkah-langkah eksplorasi baik itu minyak maupun mineral lainnya. Eksplorasi metode ini dilakukan dalam bentuk kisi atau lintasan penampang.

2. Prosedur pengambilan data gravity di darat dan laut.

Prosedur Lapangan

Targetan observasi harus mempunyai kontras densiti yang jelas (significant) agar dapat dideteksi oleh gravimetri. Grid (lintasan) yang umum digunakan cukup lebar yaitu antara 200 m s/d 1 km (500 ft s/d 1 mil). Setiap titik pengamatan diusahakan bebas dari angin, pohon-pohon, pengaruh (getaran) tanah, dll. Elevasi setiap titik observasi harus diketahui dengan akurat karena akan diperhitungkan dalam pengkoreksian hasil pembacaan alat. Begitu juga dengan waktu setiap pengukuran.

Gambar 1. Contoh pemplotan hasil pengukuran (0,01 mgal = 0,1 g.u). (Parasnis, 1973, p 239)

Pengukuran metode gayaberat dapat dibagi menjadi dua jenis yaitu: penentuan titik ikat dan pengukuran titik-titik gayaberat. Sebelum survei dilakukan perlu menentukan terlebih dahulu base station, biasanya dipilih pada lokasi yang cukup stabil, mudah dikenal dan dijangkau. Base station jumlahnya bisa lebih dari satu tergantung dari keadaan lapangan. Masing-masing base station sebaiknya dijelaskan secara cermat dan terperinci meliputi posisi dan nama tempat. Base ini dipergunakan sebagai titik tutupan harian dan juga sebagai nilai acuan bagi stasiun gaya berat lainnya.

Pengukuran data lapangan meliputi pembacaan gravimeter juga penentuan posisi, waktu, dan pembacaan altimeter serta suhu. Pengukuran gayaberat pada penelitian ini menggunakan alat Gravimeter LaCoste & Romberg Model G-804, yang memiliki kemampuan pembacaan 0 sampai 7000 mGal, dengan tingkat ketelitian 0,01 mgal dan kesalahan apungan (drift) 1 mgal per bulan atau 0,03 mgal per hari. Penentuan posisi dan waktu menggunakan Global Positioning System (GPS) Garmin, sedangkan pengukuran ketinggian menggunakan altimeter, termometer, dan microbarograph. Dari pengukuran tersebut dihasilkan 94 titik pengukuran pada sepanjang lintasan Pangalengan - Garut dengan interval tiap titik sekitar 500 meter.

Pengambilan data pada titik-titik survei dilakukan dengan sistem Loop, yaitu sistem pengukuran yang dimulai dan diakhiri pada titik gayaberat yang sudah diketahui nilainya. Sistem Loop diharapkan dapat menghilangkan kesalahan yang disebabkan oleh pergeseran pembacaan gravimeter. Metode ini muncul dikarenakan alat yang digunakan selama melakukan pengukuran akan mengalami guncang n, sehingga menyebabkan bergesernya pembacaan titik nol pada alat tersebut.

Data-data yang diambil pada saat pengukuran adalah:

1. Tanggal dan hari pembacaan Data ini berguna untuk koreksi pasang surut

2. Waktu pembacaan Data ini berguna untuk koreksi apungan dan penentuan pasang surut.

3. Pembacaan alat

4. Koordinat stasiun pengukuran dengan menggunakan GPS

5. Data inner zone untuk koreksi Terrain

Pada penelitian ini penulis mengolah dari konversi harga bacaan ke miliGal dari tiap stasiun untuk mendapatkan nilai anomali Bouguer hingga dilakukan pemodelan 2D yang kemudian dianalisa untuk menentukan keadaan geologi daerah penelitian.

Analisis Densitas Batuan Rata-rata

Hasil densitas yang digunakan dalam perhitungan ini adalah harga densitas rata-rata. Untuk menetukan harga densitas rata-rata dapat digunakan cara metode Parasnis.

Pada metode ini, densitas batuan dihitung dengan langkah-langkah sebagai berikut:

1. Menetukan profil topografi yang konsisten naik.

2. Menghitung selisih antara medan gayaberat observasi dengan gayaberat normal lalu dijumlahkan dengan KUB untuk y-nya.

3. Menghitung selisih antara KB sebelum dikalikan densitas dengan koreksi terrain sebelum dikalikan densitas untuk x-nya.

4. Rapat massa batuan diperoleh dari kemiringan garis lurus regresinya.

Berdasarkan persamaan garis lurus regresi, diperoleh densitas rata-rata batuan untuk daerah sepanjang lintasan Pangalengan - Garut, Jawa Barat adalah sebesar 2,607 g/cm3.

3. Prosedur pengolahan data gravity darat dan laut.

Pengolahan data gayaberat yang sering disebut juga dengan reduksi data gayaberat, secara umum dapat dipisahkan menjadi dua macam, yaitu: proses dasar dan proses lanjutan. Proses dasar mencakup seluruh proses berawal dari nilai pembacaan alat di lapangan sampai diperoleh nilai anomali Bouguer di setiap titik amat. Proses tersebut meliputi tahap-tahap sebagai berikut: konversi pembacaan gravimeter ke nilai milligal, koreksi apungan (drift correction), koreksi pasang surut (tidal correction), koreksi lintang (latitude correction), koreksi udara bebas(free-air correction), koreksi Bouguer, dan koreksi medan (terrain correction).Prosedur pengolahan data yang dilakukan penulis adalah mengolah dari konversi bacaan hingga menjadi model penampang 2-D. Pada pelaksanaanya, pengolahan data tersebut dibantu oleh perhitungan komputer dengan menggunakan software MS. Excel. Proses lanjutan merupakan proses untuk mempertajam kenampakan/gejala geologi pada daerah penyelidikan yaitu pemodelan dengan menggunakan software Surfer 8 dan GMSys 2-D. Beberapa koreksi dan konversi yang dilakukan dalam pemrosesan data metoda gayaberat, dapat dinyatakan sebagai berikut :

Pemrosesan data gayaberat dilakukan terhadap nilai pembacaan gravimeter untuk mendapatkan nilai anomali Bouguer. Untuk memperoleh nilai anomali Bouguer dari setiap titik amat, maka dilakukan konversi pembacaan gravimeter menjadi nilai gayaberat dalam satuan milligal. Untuk melakukan konversi memerlukan tabel konversi dari gravimeter tersebut. Setiap gravimeter dilengkapi dengan tabel konversi.

1. Posisi dan Ketinggian

Penentuan posisi menggunakan GPS, sedangkan pengukuran ketinggian menggunakan altimeter, microbarograph, dan termometer. Pengukuran ketinggian dilakukan secara diferensial yaitu dengan menggunakan microbarograph, altimeter dan termometer. Pengukuran tersebut dilakukan dengan menempatkan microbarograph di base station sedangkan altimeter dan termometer dibawa untuk melakukan pengukuran pada setiap titik amat. Adapun pemrosesan data posisi dan ketinggian sebagai berikut.

1.1 Pemrosesan Data GPS

Setiap kali pembacaan posisi titik amat langsung dapat diketahui dari bacaan tersebut, yaitu berupa bujur (longitude) dan lintang (latitude). Posisi yang ditunjukan GPS dalam satuan derajat, menit, dan detik. Maka perlu melakukan konversi posisi dari satuan waktu ke dalam satuan derajat. Posisi ini selanjutnya digunakan untuk menghitung koreksi lintang.

2.2 Pemrosesan Data Microbarograph

Microbarograph merupakan alat ukur tekanan udara yang secara tidak langsung digunakan untuk mengukur beda tinggi suatu tempat di permukaan bumi. Prinsip pengukuran ketinggian dengan microbarograph didasarkan pada suatu hubungan antara tekanan udara di suatu tempat dengan ketinggian tempat lainnya. Ketelitiaan pengukuran tinggi mikrobarograph sangat tergantung pada kondisi cuaca, sebab keadaan tersebut akan mempengaruhi tekanan udara di suatu tempat. Perbedaan temperatur udara dan kecepatan angin di suatu tempat akan menyebabkan tekanan udaranaik turun (berfluktuasi), sehingga akan menimbulkan kesalahan dalam beda tinggi antara dua tempat yang berbeda. Menurut Subagio (Putra, 2008), perlu dilakukan pengukuran temperatur udara untuk menentukan koreksi temperatur yang harus diperhitungkan dalam penentuan beda tinggi, sehingga akan memperkecil kesalahan 3. Menghitung nilai gobs

3.1 Koreksi Pasang Surut (Tide Correction)

Pada proses akuisisi data, tidak dilakukan pengukuran terhadap variasi harian akibat pasang surut di base, sehingga untuk menghitung besarnya pasang surut dilakukan menggunakan software Tide. Dalam software tersebut data yang dimasukkan secara berurutan berupa data

bujur, lintang, tinggi (h), jam, menit, tanggal, bulan, dan tahun. Hasil dari input tersebut berupa data pasang surut. Tahap selanjutnya lalu dilakukan pembacaan percepatan gravitasi dalam miligal terkoreksi pasut dengan rumus :

GST = konversi + Tide

3.2 Koreksi Apungan (Drift Correction)

Pada akuisisi pengukuran dimulai di base dan diakhiri di base, sehingga besarnya koreksi apungan dapat dihitung dengan asumsi bahwa besarnya penyimpangan berbanding lurus terhadap waktu

3.3 Medan Gayaberat Terkoreksi

Medan gayaberat terkoreksi yaitu nilai gayaberat hasil pengukuran di lapangan setelah melalui konversi ke miligal dan telah terkoreksi dari pengaruh pasang surut dan apungan. Persamaan yang digunakan adalah: g terkoreksi (GSTD) = GST – drift

3.4 Different in Reading (gdiff)

Different in Reading yaitu menghitung perbedaan harga gayaberat di setiap stasiun pengamatan dengan harga gayaberat di base station.

gdiff = GSTD – GSTD BS

3.5 Medan Gayaberat Observasi

Pengukuran gayaberat menggunakan gravimeter adalah relatif terhadap BS, sehingga dalam pengukuran diperoleh beda nilai antara stasiun pengamatan dengan BS.

Koreksi Hasil Observasi

harga pengukuran gaya berat di permukaan bumi dipengaruhi oleh 5 faktor yaitu lintang, ketinggian, topografi, pasang surut, variasi densitas bawah permukaan. Sedangkan dalam melakukan survei gayaberat diharapkan satu faktor saja yaitu variasi densitas bawah permukaan, sehingga pengaruh 4 faktor lainnya (lintang, ketinggian, topografi, pasang surut) harus direduksi atau dihilangkan dari harga pembacaan alat.

a. Koreksi lintang (latitude)

dimana F1 dan F0 adalah koordinat titik pengukuran dan titik base.

b. Koreksi elevasi (Free-Air Correction)

Koreksi ini merupakan koreksi terhadap pengaruh ketinggian pengukuran terhadap medan gravitasi bumi. FAC = 3,086 h gu, dimana h adalah elevasi titik pengukuran.

c. Koreksi Bouguer (Bougeur correction)

Koreksi massa lapisan yang diasumsikan berada diantara titik amat dengan bidang referensi (lihat Gambar 2).

Gambar 2. Koreksi Bougeour (Parasnis,

1973, p 242)

BC = 3,086 h gu, dimana h adalah elevasi titik pengukuran.

d. Koreksi topografi (Terrain correction)

Koreksi topografi, Tc, adalah koreksi pengaruh topografi terhadap gayaberat pada titik amat, akibat perbedaan ketinggian antara titik observasi dengan base. Dapat dihitung dengan menggunakan Hammer Chart (lihat gambar 3).

Gambar 3. Model yang digunakan untuk koreksi topografi dan diagram perhitungan (Parasnis, 1973, p 245 dan 246).

3 Anomali Bouguer

Merupakan anomali yang dicari dengan cara mereduksi hasil pengukuran lapangan dengan koreksi-koreksi seperti yang telah diuraikan di atas.

Dg = {Dgobs ± DgF + (3,086 – 0,4191r) h + Tr} gu

Contoh penentuan anomali dapat dilihat pada Gambar 4.

Gambar 4. Contoh penentuan Anomali Bougeour

http://wandymausharing.blogspot.com/2012/07/1.html

Dalam dokumen Metode Gravity (Halaman 40-51)

Dokumen terkait