• Tidak ada hasil yang ditemukan

Gejala Penyakit oleh B. theobromae

Penyakit yang disebabkan oleh B. theobromae pada lima tanaman inang menunjukkan gejala yang beragam dan bagian yang terinfeksi berbeda-beda (Gambar 1). Gejala pada tanaman jeruk adalah kulit batang dan cabang mengelupas dan kering, pengelupasan kulit batang dan cabang terus meluas hingga ke seluruh permukaan sehingga terbentuk luka yang terbuka (Wiratno & Nurbanah 1997). Pada tingkat serangan yang berat batang tanaman jeruk

membusuk dan kemudian mati (1A). Tanaman kakao yang terserang B. theobromae mengalami penyakit pod rot. Pada buah yang terserang terdapat

bercak cokelat dan menjadi keriput (1B). Menurut CABI (2007) bercak pada buah kakao yang disebabkan B. theobromae pada awalnya merupakan klorosis yang kemudian menjadi bercak cokelat yang meluas.

Gambar 1 Gejala penyakit yang disebabkan oleh cendawan B. theobromae pada lima tanaman inang. Jeruk (A); kakao (B); karet (C); manggis (D); pisang (E). Sumber foto: (A,C,D,E) Suryo Wiyono; (B) TNAU 2008

D E

Permukaan batang tanaman karet muda yang terserang B. theobromae menjadi berwarna cokelat dan teksturnya menjadi kasar (1C). Menurut Pha et al. (2009) pada kelembaban yang cukup miselia berwarna putih akan muncul pada permukaan batang yang retak serta kulit batang dan ranting terkelupas. kulit batang karet yang terserang menjadi busuk disertai keluarnya lateks atau getah pada tanaman muda berumur 1-2 tahun. Pada serangan yang berat dapat

menyebabkan retak dan gummosis. Tanaman manggis yang terserang B. theobromae mengalami mati ujung, ranting menjadi kering dan berwarna

hitam, selain itu kulit terkelupas dan menjadi luka (1D).

Buah pisang yang terserang B. theobromae mengalami busuk buah. Pada kulit buah terdapat bercak-bercak hitam kecokelatan tidak beraturan yang dapat meluas (1E). Menurut Raut & Ranade (2004) pada awalnya bercak berwarna cokelat muda, lama kelamaan bercak berubah warna menjadi cokelat tua hingga hitam. Bercak meluas dimulai dari bagian ujung atas buah yang kemudian menyebar hingga ke seluruh bagian buah sehingga daging buah menjadi berwarna cokelat tua hingga hitam, lembek dan berair. Dalam keadaan yang lembab miselium dan piknidia berwarna hitam juga dapat terlihat pada jaringan tanaman yang bergejala.

Karakter Morfologi B. theobromae

Karakter morfologi cendawan B. theobromae berasal dari lima inang menunjukkan bahwa cendawan-cendawan tersebut memiliki perbedaan dalam warna koloni (Gambar 2). Koloni pada usia 11 hari (tua) isolat asal jeruk berwarna abu-abu muda, kakao berwarna cokelat, karet berwarna cokelat tua, manggis berwarna hitam keabuan, dan pisang berwarna hitam pekat. Perubahan warna koloni pada karet, kakao, pisang, dan jeruk secara merata di seluruh miselium pada cawan petri pada awalnya berwarna putih terus bertambah gelap dengan bertambahnya umur koloni. Sedangkan pada manggis perubahan warna dimulai dari tengah koloni yang mulai berwarna gelap dan terus menyebar hingga ke bagian pinggir koloni pada cawan petri.

3 HST

11 HST

Gambar 2 Koloni isolat cendawan B. theobromae dari lima tanaman inang pada media PDA berumur 3 dan 11 hari setelah tanam (HST). Jeruk (A), kakao (B), karet (C), manggis (D), pisang (E).

Koloni mengalami perubahan warna dengan bertambahnya umur koloni. Pada isolat asal manggis miselium berwarna putih hingga 3 hari setelah tanam (HST) dan terus bertambah gelap seiring waktu hingga 7 HST. Isolat asal pisang dan karet berwarna putih hingga 6 HST dan terus bertambah gelap seiring waktu hingga 8 HST, sedangkan isolat asal kakao dan jeruk miselium masih berwarna putih hingga 10 HST dan terus bertambah gelap seiring waktu hingga 15 HST.

Gambar 3 Pertumbuhan ukuran koloni cendawan B. theobromae pada media PDA selama 96 jam

0 1 2 3 4 5 6 7 8 9 10 12 24 36 48 60 72 84 96 Diam eter koloni (cm )

Umur biakan (Jam)

Jeruk Kakao Karet Manggis Pisang

A B C D E

Tabel 2 Pertumbuhan diameter koloni cendawan B. theobromae B. theobromae Kecepatan pertumbuhan koloni isolat

asal (cm)/12 Jam ± SD Jeruk 1,48 a ± 0,24 Kakao 1,20 ab ± 0,17 Karet 1,45 a ± 0,13 Manggis 0,68 b ± 0,59 Pisang 1,68 a ± 0,15

Keterangan: Huruf berbeda menunjukkan perbedaan nyata dengan uji selang ganda Duncan (α = 0,05),

SD = standar deviasi

Pertumbuhan koloni B. theobromae pada lima tanaman inang menunjukkan kecepatan yang berbeda-beda. Koloni isolat asal pisang memiliki kecepatan tumbuh paling cepat yaitu 1,68 cm per 12 jam, sedangkan isolat asal manggis menunjukkan kecepatan pertumbuhan paling lambat yaitu 0,68 cm per 12 jam (Tabel 2). Kecepatan pertumbuhan isolat asal jeruk, karet dan pisang tidak berbeda nyata, isolat asal kakao tidak berbeda nyata dengan semua isolat lain.

Ukuran maksimum koloni cendawan B. theobromae pada media PDA di dalam cawan petri dalam penelitian ini adalah 9 cm. Pada umumnya pertumbuhan miselium mencapai 9 cm pada 36-84 jam setelah tanam (JST). Pada Gambar 3 ditunjukkan bahwa pertumbuhan paling cepat adalah pada isolat B. theobromae asal pisang yaitu mencapai 9 cm pada 36 JST, miselium isolat asal jeruk dan karet memiliki kecepatan pertumbuhan yang hampir sama mencapai 9 cm pada 48 HST. Pada isolat asal kakao pertumbuhan miselium mencapai 9 cm pada 72 JST, sedangkan pertumbuhan miselium asal manggis adalah yang paling lambat yaitu mencapai 9 cm pada 84 JST.

Gambar 4 menunjukkan piknidia B. theobromae asal tanaman jeruk, kakao, karet, manggis dan pisang dengan perbesaran 4 X 10. Piknidia merupakan tubuh buah yang berbentuk seperti labu yang didalamnya terdapat konidiofor dan memproduksi konidia (Agrios 2005). Pada umumnya piknidia berwarna cokelat hingga hitam dan diselimuti oleh miselia. Piknidia terbentuk secara berpencar atau tidak berkelompok. Pada Gambar 4 A, B, C, dan D piknidia tampak dari atas, sebagian tubuh piknidia muncul di permukaan, sehingga jika tampak dari atas piknidia berbentuk bulat dan timbul serta diselimuti oleh miselium cendawan

putih. Piknidia asal tanaman jeruk, kakao dan manggis berwarna hitam, sedangkan piknidia asal tanaman karet dan pisang berwarna cokelat tua hingga cokelat kehitaman.

Gambar 4 Piknidia cendawan B. theobromae dari lima tanaman inang dengan perbesaran 40x. Jeruk (A); kakao (B); karet (C); manggis (D); pisang (E).

Piknidia B. theobromae yang berasal dari tanaman pisang (Gambar 4 E), tampak dari samping berbentuk jorong atau tabung, berwarna cokelat, dan piknidia terbentuk diantara miselium cendawan. Tampak samping terlihat bahwa sebagian tubuh piknidia muncul di atas permukaan koloni cendawan, sedangkan sebagian lainnya berada di dalam miselium.

Gambar 5 Piknidia B. theobromae yang pecah mengeluarkan konidia

A B C

Piknidia berwarna hitam yang pecah dan mengeluarkan konidia muda (Gambar 5). Dengan pewarnaan menggunakan lactophenol blue konidia muda tampak berwarna biru, konidia keluar dari dalam piknidia yang dipecahkan. Menurut Masilamani & Muthumar (1996) pada kondisi alami piknidia matang akan menghasilkan konidia matang yang kemudian konidia matang akan keluar melalui lubang ostiol pada piknidia dan kemudian menyebar.

Gambar 6 menunjukkan konidia muda dan konidia matang B. theobromae yang berasal dari empat tanaman inang dengan perbesaran 10 X 100 dan pewarnaan dengan lactophenol blue. Konidia muda tidak memiliki sekat (bersel satu), dinding konidia relatif tebal, dan berwarna hialin sehingga jika diwarnai dengan lactophenol blue maka konidia akan terlihat berwarna biru. Morfologi konidia matang memiliki perbedaan dengan konidia muda, yaitu konidia matang berwarna cokelat tua, memiliki sekat, terdiri dari dua sel dan dinding konidia yang tidak nampak ketebalannya. Menurut Watanabe (2002) konidia B. theobromae berpencar secara tunggal, hialin, berbentuk jorong atau silinder, dan pada umumnya konidia matang terdiri dari dua sel (bersekat satu).

Pada Tabel 3 ditunjukkan bahwa semua isolat B. theobromae asal lima tanaman inang membentuk piknidia pada media WA+jerami, sedangkan pada media PDA hanya tiga isolat saja (asal jeruk, karet dan pisang). Konidia muda dan konidia matang dibentuk oleh isolat asal empat tanaman inang pada media WA+jerami sedangkan pada media PDA hanya tiga isolat. Pada media PDA, B. theobromae asal kakao tidak terbentuk piknidia, konidia muda, dan konidia matang, hal ini karena media PDA termasuk media yang kaya hara seperti glukosa dan karbohidrat. Menurut Shivas & Beasley (2005), lingkungan yang tidak alami, seperti media agar-agar yang kaya hara, dapat saja merupakan kondisi yang

kurang cocok untuk sporulasi cendawan patogen tanaman. Sporulasi B. theobromae dapat ditingkatkan dengan penambahan material asal tanaman

Konidia muda

Konidia matang

Gambar 6 Konidia muda maupun matang cendawan B. theobromae dari empat tanaman inang. Jeruk (A); kakao (B); karet (C); pisang (D).

A B

C D

A B

Tabel 3 Pembentukan piknidia, konidia muda, dan konidia matang B. theobromae lima tanaman inang pada media WA dan PDA

Tanaman Inang

Waktu (hari) untuk pembentukan

Piknidia Konidia Muda Konidia Matang WA +jerami PDA WA +jerami PDA WA +jerami PDA Jeruk 13 17 13 17 21 22 Kakao 20 - 20 - 22 - Karet 13 32 13 39 19 48 Manggis 20 - - - - - Pisang 17 17 17 18 23 22

Keterangan: WA = water agar, PDA = potato dextrose agar, (-): tidak terbentuk

Pembentukan piknidia, konidia muda, dan konidia matang pada media WA+jerami cenderung lebih cepat dibanding pada media PDA. B. theobromae memproduksi piknidia yang menghasilkan konidia pada kondisi lingkungan yang kurang menguntungkan yaitu kurangnya hara dan media WA+jerami merupakan media yang miskin hara sehingga piknidia dan konidia terbentuk lebih cepat pada media tersebut. Piknidia isolat B. theobromae pada media PDA terbentuk antara 17-32 HST. Pada isolat asal jeruk dan pisang piknidia terbentuk paling cepat yaitu pada 17 HST, sedangkan pembentukan piknidia pada isolat asal karet paling lambat yaitu terbentuk setelah 32 HST. Pada isolat asal jeruk konidia muda terbentuk paling cepat diantara isolat lain yaitu pada 17 HST, sedangkan isolat asal kakao terbentuk paling lambat yaitu setelah 39 HST. Konidia matang pada media PDA terbentuk antara 22-48 HST. Pada isolat asal jeruk dan pisang konidia matang terbentuk paling cepat yaitu pada 22 HST, isolat asal karet pembentukan konidia matang paling lambat yaitu terbentuk setelah 48 HST. Menurut Shah et al. (2010) waktu yang dibutuhkan B. theobromae untuk menghasilkan piknidia pada media buatan adalah antara 20-34 hari setelah tanam.

Isolat B. theobromae asal manggis hanya membentuk piknidia pada media WA+jerami saja, tetapi tidak pada PDA. Konidia muda, dan konidia matang tidak terbentuk baik pada media WA+jerami maupun media PDA. Sandra (2011) menyatakan bahwa piknidia dan konidia B. theobromae asal manggis hanya dapat terbentuk pada media dengan bahan induksi berupa kulit manggis, hal ini

menunjukkan bahwa dalam pembentukan piknidia dan konidia diperlukan nutrisi tertentu agar dapat merangsang pembentukannya.

Konidia muda pada isolat B. theobromae asal jeruk berukuran 20-29 µm X 11-14 µm, konidia muda asal kakao berukuran 14-19 µm X 9-11 µm, konidia muda asal karet berukuran 16-20 µm X 9-12 µm, sedangkan konidia asal pisang berukuran 16-20 µm X 8-12 µm (Tabel 4). Menurut Watanabe (2002) piknidia cendawan B. theobromae berukuran 210 µm X 150 µm, dan konidia berukuran 7,5-17,5 µm X 2,2-4,5 µm.

Tabel 4 Ukuran panjang, lebar, dan tebal dinding konidia muda B. theobromae asal empat tanaman inang pada media water agar + jerami

Tanaman Inang

Ukuran konidia muda Panjang (µm) ± SD Lebar (µm) ± SD Rasio panjang/lebar ± SD Tebal dinding (µm) ± SD Jeruk 22,91 a ± 2,38 12,68 a ± 0,73 1,82 a ± 0,27 1,72 a ± 0,23 Kakao 16,96 b ± 1,64 9,54 c ± 0,52 1,78 a ± 0,19 1,54 ab ± 0,49 Karet 17,44 b ± 1,25 10,56 b ± 1,19 1,67 a ± 0,23 1,86 a ± 0,29 Pisang 17,42 b ± 1,38 10,09 bc ± 1,07 1,75 a ± 0,30 1,32 b ± 0,25

Keterangan: Huruf berbeda menunjukkan perbedaan nyata dengan uji selang ganda Duncan (α = 0,05)

SD = standar deviasi

Ukuran panjang, lebar, dan tebal dinding konidia muda B. theobromae berbeda nyata (Tabel 4). Konidia muda B. theobromae asal jeruk memiliki ukuran paling besar yaitu rata-rata panjang konidia 22,91 µm dan lebar 12,68 µm, sedangkan konidia muda isolat asal kakao memiliki ukuran paling kecil, yaitu rata-rata panjang konidia 16,96 µm dan lebar 9,54 µm. Tebal dinding isolat asal karet memiliki ukuran yang paling besar yaitu 1,86 µm, sedangkan isolat asal pisang memiliki tebal dinding yang paling kecil yaitu 1,32 µm.

Rasio panjang/lebar konidia muda B. theobromae asal jeruk, kakao, karet, dan pisang tidak berbeda nyata (Tabel 5). Konidia muda isolat asal jeruk memiliki rasio panjang/lebar tertinggi yaitu 1,82 sedangkan konidia isolat asal karet memiliki rasio panjang/lebar terendah yaitu 1,67. Rasio panjang/lebar konidia muda dari keempat isolat >1 sehingga konidia berbentuk jorong. Bentuk konidia akan semakin bulat jika rasio panjang/lebar mendekati 1.

Panjang dan lebar konidia matang isolat B. theobromae asal empat tanaman inang memiliki ukuran panjang dan lebar konidia matang yang berbeda nyata (Tabel 5). Konidia matang pada isolat B. theobromae asal jeruk berukuran 21-28 µm X 11-14 µm, konidia matang asal kakao berukuran 13-19 µm X 9-12 µm, konidia matang asal karet berukuran 16-27 µm X 9-13 µm, sedangkan konidia matang asal pisang berukuran 17-22 µm X 10-13 µm. Berdasarkan pengukuran, ukuran konidia matang cenderung lebih besar dibandingkan konidia muda, namun tebal dinding konidia matang tidak dapat diukur karena tebal dinding terlalu kecil. Tabel 5 Ukuran panjang dan lebar konidia matang cendawa B. theobromae asal

empat tanaman inang pada media water agar + jerami Tanaman

Inang

Ukuran konidia matang Panjang (µm) ± SD Lebar (µm) ± SD Rasio panjang/lebar ± SD Jeruk 23,63 a ± 2,26 12,83 a ± 1,10 1,86 a ± 0,31 Kakao 15,40 c ± 1,96 10,67 b ± 1,00 1,44 b ± 0,12 Karet 21,08 b ± 3,19 11,39 b ± 1,45 1,89 a ± 0,46 Pisang 19,32 b ± 1,98 11,59 b ± 1,01 1,68 ab ± 0,21

Keterangan: Huruf berbeda menunjukkan perbedaan nyata dengan uji selang ganda Duncan (α = 0,05)

SD = standar deviasi

Panjang dan lebar konidia matang isolat B. theobromae asal empat tanaman inang memiliki ukuran panjang dan lebar konidia matang yang berbeda nyata (Tabel 5). Konidia matang B. theobromae asal jeruk memiliki ukuran paling besar yaitu rata-rata panjang konidia 23,63 µm dan lebar 12,83 µm, sedangkan konidia matang isolat asal kakao memiliki ukuran paling kecil, yaitu rata-rata panjang konidia 15,40 µm dan lebar 10,67 µm. Perbedaan ukuran konidia matang dan muda B. theobromae menunjukkan bahwa ada keragaman ukuran konidia antar isolat yang berasal dari tanaman inang yang berbeda.

Rasio panjang/lebar konidia muda B. theobromae asal jeruk, kakao, karet, dan pisang berbeda nyata (Tabel 4). Rasio panjang/lebar konidia matang dari keempat isolat >1 sehingga konidia berbentuk jorong (Tabel 5). Bentuk konidia akan semakin bulat jika rasio panjang/lebar mendekati 1. Konidia muda isolat asal karet memiliki rasio panjang/lebar tertinggi yaitu 1,89 sedangkan konidia isolat asal kakao memiliki rasio panjang/lebar terendah yaitu 1,44. Rasio panjang/lebar

konidia muda lebih rendah dibanding konidia matang kecuali pada isolat asal kakao, sehingga bentuk konidia matang lebih jorong dibanding konidia muda.

Karakter Molekuler Cendawan B. theobromae

Analisis molekuler terhadap DNA cendawan B. theobromae dilakukan dengan teknik RAPD-PCR menggunakan primer OPD 06 (Gambar 7, Tabel 6) dan OPN 07 (Gambar 8, Tabel 7). Gambar 7 menunjukkan pola RAPD-PCR menggunakan primer OPD 06 dan Gambar 8 menggunakan primer OPN 07 dan marker GeneRulerTM DNA Ladder. Gambar tersebut menunjukkan bahwa primer OPD 06 dan OPN 07 dapat mengamplifikasi DNA cendawan B. theobromae asal berbagai tanaman inang di beberapa lokasi pada genom cendawan tersebut dengan ukuran amplikon yang berbeda-beda.

Gambar 7 Profil DNA lima isolat cendawan B. theobromae yang diamplifikasi dengan RAPD-PCR menggunakan primer OPD 06

Tabel 6 Ukuran fragmen DNA cendawan B. theobromae asal berbagai tanaman inang dengan RAPD menggunakan primer OPD 06

Keterangan: bp= base pair (pasangan basa)

Pita DNA ke- Jeruk Kakao Ukuran (bp) pita DNA isolat B. theobromae asal Karet Manggis Pisang

1 1000 850 <500 <500 1000

Tabel 6 menunjukkan ukuran fragmen DNA cendawan B. theobromae asal lima tanaman inang hasil RAPD menggunakan primer OPD 06. Profil DNA kelima cendawan B. theobromae memiliki perbedaan jumlah dan ukuran pita DNA yang dihasilkan. Pada isolat B. theobromae asal kakao, karet, dan manggis DNA teramplifikasi pada satu lokasi, DNA isolat asal jeruk dan pisang teramplifikasi pada dua lokasi, selain itu ukuran pita DNA yang teramplifikasi pada kelima isolat berbeda-beda. Hal ini menunjukkan bahwa kelima isolat tersebut memiliki perbedaan genetik.

Gambar 8 Profil DNA lima isolat cendawan B. theobromae yang diamplifikasi dengan RAPD-PCR menggunakan primer OPN 07.

Tabel 7 Ukuran fragmen DNA cendawan B. theobromae asal berbagai tanaman inang dengan RAPD menggunakan primer OPN 07

Keterangan: bp= base pair (pasangan basa)

Pita DNA ke- Ukuran (bp) pita DNA isolat B. theobromae asal

Jeruk Kakao Karet Manggis Pisang

1 1400 2000 1800 1000 2000 2 1100 1000 1400 900 3 700 600 1200 4 1000 5 600 6 450

Tabel 7 menunjukkan ukuran fragmen DNA isolat B. theobromae asal lima tanaman inang hasil RAPD menggunakan primer OPN 07. Profil DNA kelima isolat B. theobromae menunjukkan perbedaan jumlah dan ukuran pita DNA yang lebih beragam dibandingkan dengan pola RAPD dengan primer OPD 06. Pada isolat B. theobromae asal manggis DNA teramplifikasi pada satu lokasi, DNA isolat asal jeruk dan kakao teramplifikasi pada tiga lokasi, sedangkan DNA isolat asal karet teramplifikasi pada enam lokasi. Selain itu ukuran pita DNA yang teramplifikasi pada kelima isolat berbeda-beda (Gambar 8), hal ini menunjukkan bahwa keempat isolat tersebut memiliki perbedaan genetik yang cukup nyata. RAPD menggunakan primer tunggal pendek dengan urutan nukleotida acak, dilakukan dengan suhu annealing rendah dan menghasilkan beberapa produk PCR yang menghasilkan pola pita setelah dilakukan pemisahan oleh elektroforesis (Edel 1998).

Menurut Edel (1998), analisis DNA menggunakan RAPD umumnya dilakukan dengan primer non-spesifik sehingga kondisi reaksi dan thermocycle RAPD lebih sensitif dibandingkan tes PCR konvensional. Dengan demikian konsentrasi dari semua campuran bahan dalam reaksi harus akurat. Selain itu kualitas dari template DNA dan Taq polymerase merupakan faktor yang juga dapat mempengaruhi hasil RAPD.

Gejala Penyakit oleh Cendawan R. solani

Penyakit yang disebabkan oleh R. solani pada tiga tanaman inang menunjukan gejala yang beragam (Gambar 9). Gejala yang disebabkan oleh R. solani pada tanaman jagung (Gambar 9A) yaitu terdapat bercak tidak teratur berwarna putih kotor atau cokelat muda dan pada bagian pinggir bercak berwarna cokelat tua. Bercak terus meluas dari mulai bagian pelepah hingga ke seluruh jaringan tanaman. Pada bagian tanaman yang terserang cukup parah, seluruh bagian tanaman menjadi berwarna cokelat dan kering, kemudian tanaman mati. Pada bagian tanaman yang sudah mati terdapat sklerotia berwarna cokelat.

Gambar 9 Gejala penyakit yang disebabkan oleh cendawan R. solani pada tiga tanaman inang. Jagung (A); Padi (B); Sorghum (C).

Pelepah tanaman padi yang terserang cendawan R. solani (9B) terdapat bercak tidak beraturan berwarna cokelat hingga hitam dengan pusat bercak berwarna putih, abu-abu atau cokelat muda, biasanya cendawan tersebut menyerang pada bagian bawah pelepah kemudian akan terus menyebar ke bagian atas. Pelepah bagian atas yang terserang menjadi kering, sedangkan pelepah bagian bawah menjadi lembek dan mudah hancur atau patah karena pada bagian bawah pelepah memiliki kelembaban yang lebih tinggi.

Tanaman Sorghum (9C) yang terserang R. solani menunjukkan gejala yang khas, yaitu terdapat bercak meluas yang bersudut pada bagian bawah bercak dengan pusat bercak berwarna putih, putih kotor atau cokelat muda. Pada bagian pinggir bercak berwarna cokelat tua. Bagian yang terserang parah akan menjadi kering dan kemudian tanaman mati. Pada bagian tanaman yang mati terdapat sklerotia berwarna cokelat.

Karakter Morfologi R. solani

Hasil pengamatan karakter morfologi terhadap cendawan R. solani yang berasal dari lima inang yaitu: jagung, nanas, padi, sorghum, dan ubi jalar (Gambar 10), menunjukkan bahwa koloni kelima isolat R. solani memiliki warna yang berbeda. Pada isolat asal jagung miselium berwarna kuning cerah, isolat asal nanas berwarna cokelat, isolat asal padi berwarna cokelat kemerahan, isolat asal sorghum berwarna cokelat muda, sedangkan isolat asal ubi jalar miselium berwarna hitam pada bagian tengah koloni dan berwarna cokelat tua pada pinggiran koloni. Pada isolat asal jagung, nanas dan sorghum perubahan warna merata pada seluruh miselium seiring waktu, sedangkan pada isolat asal padi dan

ubi jalar perubahan warna dimulai dari tengah koloni dan terus bertambah gelap hingga bagian pinggir koloni.

4 HST

18 HST

Gambar 10 Koloni isolat cendawan R. solani dari lima tanaman inang pada umur 4 dan 18 HST pada media PDA. jagung (A); nanas (B); padi (C); sorghum (D); ubi jalar (E).

Koloni mengalami perubahan warna dengan bertambahnya umur koloni. Pada isolat asal jagung miselium berwarna putih hingga 2 HST kemudian berubah menjadi berwarna kuning hingga 5 HST dan menjadi kuning cerah hingga 18 HST. Sedangkan pada isolat nanas, padi dan sorghum miselium berwarna putih hingga 3 HST kemudian menjadi berwarna kuning muda hingga 4 HST dan terus bertambah gelap hingga 15 HST. Isolat asal ubi menunjukkan perubahan warna paling cepat diantara isolat lain yaitu berwarna putih hingga 1 HST kemudian terus bertambah gelap hingga 5 HST.

Kecepatan pertumbuhan koloni R. solani pada lima tanaman inang berbeda nyata (Tabel 8). Koloni isolat asal jagung memiliki kecepatan tumbuh paling cepat yaitu rata-rata pertumbuhan 4,20 cm per 12 jam, sedangkan isolat asal ubi jalar menunjukkan kecepatan pertumbuhan paling lambat yaitu rata-rata 1,60 cm per 12 jam. Pertumbuhan maksimum koloni R. solani pada media PDA di dalam cawan petri adalah 9 cm. Umumnya pertumbuhan koloni cendawan R. solani mencapai maksimum pada 48-120 jam setelah tanam (JST).

Gambar 11 Grafik pertumbuhan koloni cendawan R. solani pada media PDA. Tabel 8 Pertumbuhan diameter koloni cendawan R. solani

Tanaman Inang Kecepatan pertumbuhan koloni isolat asal (cm)/12 jam ± SD Jagung 4,20 a ± 0.36 Nanas 2,37 b ± 0.58 Padi 1,87 bc ± 0.15 Sorghum 1,80 bc ± 0.17 Ubi Jalar 1,60 c ± 0.17

Keterangan: Huruf berbeda menunjukkan perbedaan nyata dengan uji selang ganda Duncan (α = 0,05)

SD = standar deviasi

Pada Gambar 11 ditunjukkan bahwa pertumbuhan miselium paling cepat adalah isolat asal jagung, yaitu pada 48 JST dan yang paling lambat adalah isolat asal ubi jalar yaitu pada 120 JST. Terdapat perbedaan kecepatan pertumbuhan pada kelima isolat tersebut.

Gambar 12 merupakan hifa R. solani yang berasal dari lima tanaman inang, dengan pewarnaan lactophenol blue. Hifa R. solani memiliki percabangan yang tegak lurus, berwarna hialin dan memiliki sekat. Menurut Schumann & D’Arcy (2006) R. solani dapat diidentifikasi dari karakter hifa yang khas, yaitu sudut percabangan yang tegak lurus yang membedakan dengan cendawan lainnya.

0 1 2 3 4 5 6 7 8 9 10 12 24 36 48 60 72 84 96 108 120 Diam eter Koloni (cm )

Umur Biakan (Jam)

Jagung Nanas Padi Sorghum Ubi Jalar

Gambar 12 Hifa cendawan R. solani asal lima tanaman inang dengan perbesaran 10 X 100 dan pewarnaan lactophenol blue. Jagung (A); nanas (B); padi (C); sorghum (D); ubi jalar (E).

Tabel 9 Ukuran panjang ruas dan lebar hifa cendawan R. solani pada lima tanaman inang

Tanaman Inang Panjang ruas ± SD Ukuran hifa (µm) Lebar ± SD Jagung 29,32 c ± 7,36 2,78 c ± 0,46 Nanas 45,57 b ± 13,21 3,98 b ± 0,52 Padi 56,99 a ± 18,54 4,59 a ± 1,13 Sorghum 60,15 a ± 23,16 5,01 a ± 0,83 Ubi Jalar 39,57 b ± 11,03 3,78 b ± 0,67

Keterangan: Huruf berbeda menunjukkan perbedaan nyata dengan uji selang ganda Duncan (α = 0,05)

SD = standar deviasi

Panjang ruas dan lebar hifa R. solani asal padi dengan asal sorghum tidak

Dokumen terkait