• Tidak ada hasil yang ditemukan

C. METODE ANALISIS

2. Kadar Abu

3. Kadar Serat Kasar % Max. 2

4. Kadar HCN mg/kg Max. 10

5. Residu pestisida - Sesuai dengan aturan yang berlaku

6. Logam berat - Tidak terdeteksi

7. Bahan Tambahan - Tidak terdeteksi

MOCAL mempunyai karakteristik yang khas, sangat berbeda dengan tepung singkong dan tepung tapioka. Dibandingkan dengan tepung tapioka, viskositas MOCAL lebih rendah. Hal ini disebabkan o l e h komponen pati t e p u n g tapioka mencakup hampir seluruh bahan kering, sedangkan pada MOCAL komponen selain pati masih dalam jumlah yang signifikan. Namun demikian, dengan fermentasi s e l a m a 72 jam akan didapatkan produk MOCAL yang mempunyai viskositas mendekati t ep u n g tapioka (data tidak ditunjukkan). Hal ini dapat dipahami bahwa semakin lama waktu fermentasi maka akan semakin banyak sel singkong yang pecah, sehingga pembebasan granula pati menjadi semakin meningkat (Subagio, 2007).

D. PATI

1. Granula Pati

Pati merupakan homopolimer glukosa dengan ikatan -glikosidik. Pati terdiri dari butiran-butiran kecil yang disebut granula. Winarno (2002), menyatakan bahwa granula pati mempunyai sifat merefleksikan cahaya terpolarisasi, sehingga di bawah mikroskop terlihat kristal hitam

Granula pati mempunyai bentuk dan ukuran yang berbeda-beda tergantung dari sumbernya. Menurut Moorthy (2004), ukuran granula tapioka menunjukan variasi yang besar yaitu sekitar 5-40 µm dengan bentuk bulat dan oval. Variasi tersebut dipengaruhi oleh varietas tanaman singkong dan periode pertumbuhan pada musim yang berbeda.

2. Amilosa dan Amilopektin

Granula pati terdiri dari dua fraksi yang dapat dipisahkan dengan air panas. Fraksi terlarut disebut amilosa dan fraksi yang tidak terlarut disebut amilopektin (Winarno, 2002). Pola difraksi sinar-x granula pati adalah bukti bahwa terdapat daerah kristalinitas atau misela pada granula pati (Swinkels, 1985). Misela merupakan bagian molekul linier yang berikatan dengan rantai molekul terluar molekul cabang (Pomeranz, 1991). Ikatan ini terjadi apabila bagian-bagian linier molekul pati berada paralel satu sama lain, sehingga gaya ikatan hidrogen akan menarik rantai ini bersatu (Swinkels, 1985). Di antara misela terdapat daerah yang renggang atau amorf (Pomeranz, 1991). Daerah amorf ini kurang padat, sehingga mudah dimasuki air. Pada pati kentang dan tapioka, misela terbentuk oleh amilopektin, sedangkan daerah amorf dibentuk oleh amilosa.

Amilosa merupakan rantai lurus yang terdiri dari molekul-molekul glukosa yang berikatan -(1,4)-D-glukosa. Panjang polimer dipengaruhi oleh sumber pati dan akan mempengaruhi berat molekul amilosa. Pada umumnya amilosa dari umbi-umbian mempunyai berat molekul yang lebih besar dibandingkan dengan berat molekul amilosa serealia, dengan rantai polimer lebih panjang daripada rantai polimer amilosa serealia (Moorthy, 2004)

Menurut Taggart (2004), amilosa memilki kemampuan membentuk kristal karena struktur rantai polimernya yang sederhana. Strukturnya yang sederhana ini dapat membentuk interaksi molekular yang kuat. Interaksi ini terjadi pada gugus hidroksil molekul amilosa. Pembentukan ikatan hidrogen ini lebih mudah terjadi pada amilosa daripada amilopektin. Struktur amilosa dapat dilihat pada Gambar 3.

Gambar 3. Struktur amilosa (Chaplin, 2006)

Jumlah atau kadar amilosa pati pada singkong berada pada kisaran 20-27% mirip dengan pati tanaman lain. Pada dasarnya, struktur amilopektin sama seperti amilosa, yaitu terdiri dari rantai pendek -(1,4)- D-glukosa dalam jumlah yang besar. Perbedaannya ada pada tingkat percabangan yang tinggi dengan ikatan -(1,6)-D-glukosa dan bobot molekul yang besar. Amilopektin juga dapat membentuk kristal, tetapi tidak sereaktif amilosa. Hal ini terjadi karena adanya rantai percabangan yang menghalangi terbentuknya kristal (Taggart, 2004). Struktur amilopektin dapat dilihat pada Gambar 4.

3. Daya Kembang Pati (swelling power) dan Kelarutan

Daya kembang pati atau swelling power didefinisikan sebagai pertambahan volume dan berat maksimum yang dialami pati dalam air (Balagopalan et al., 1988). Swelling power dan kelarutan terjadi karena adanya ikatan non-kovalen antara molekul-molekul pati. Bila pati dimasukkan ke dalam air dingin, granula pati akan menyerap air dan membengkak. Namun demikian, jumlah air yang terserap dan pembengkakannya terbatas hanya mencapai 30% (Winarno, 2002). Ketika granula pati dipanaskan dalam air, granula pati mulai mengembang (swelling). Swelling terjadi pada daerah amorf granula pati. Ikatan hidrogen yang lemah antar molekul pati pada daerah amorf akan terputus saat pemanasan, sehingga terjadi hidrasi air oleh granula pati. Granula pati akan terus mengembang, sehingga viskositas meningkat hingga volume hidrasi maksimum yang dapat dicapai oleh granula pati (Swinkels, 1985). Faktor-faktor seperti rasio amilosa-amilopektin, distribusi berat molekul dan panjang rantai, serta derajat percabangan dan konformasinya menentukan swelling power dan kelarutan (Moorthy, 2004). Swelling

merupakan sifat yang dipengaruhi oleh amilopektin (Li dan Yeh, 2001). Proporsi yang tinggi pada rantai cabang amilopektin memiliki kontribusi dalam peningkatan nilaiswelling.Selain itu, terdapat korelasi yang negatif antara swelling power dengan kadar amilosa, swelling power menurun seiring dengan peningkatan kadar amilosa (Sasaki dan Matsuki, 1998 dalam Li dan Yeh, 2001). Amilosa dapat membentuk kompleks dengan lipida pada pati sehingga dapat menghambat swelling (Charles et al.,

2005).

Swinkels (1985) menyatakan bahwa nilai swelling power dapat diukur pada kisaran suhu terbentuknya pasta pati, yaitu sekitar 50-95°C dengan interval 5°C. Menurut Pomeranz (1991), swelling power dapat diukur pada interval suhu 5°C pada kisaran suhu gelatinisasi sampai 100°C. Sementara itu, Li dan Yeh (2001) mengukur swelling power dan kelarutan pati dengan interval 10°C yaitu pada suhu 55°C, 65°C, 75°C, 85°C, dan 95°C. Pengukuran swelling power dapat dilakukan dengan

membuat suspensi pati dalam botol sentrifusa lalu dipanaskan selama 30 menit pada suhu yang telah ditentukan. Kemudian bagian yang cair (supernatan) dipisahkan dari endapan. Swelling power diukur sebagai berat pati yang mengembang (endapan) per berat pati kering. Tepung tapioka memilikiswelling power yang besar (Balagopalan et al., 1988).

Ketika pati dipanaskan dalam air, sebagian molekul amilosa akan keluar dari granula pati dan larut dalam air. Persentase pati yang larut dalam air ini dapat diukur dengan mengeringkan supernatan yang dihasilkan saat pengukuranswelling power. Menurut Fleche (1985), ketika molekul pati sudah benar-benar terhidrasi, molekul-molekulnya mulai menyebar ke media yang ada di luarnya dan yang pertama keluar adalah molekul-molekul amilosa yang memiliki rantai pendek. Semakin tinggi suhu maka semakin banyak molekul pati yang akan keluar dari granula pati. Selama pemanasan akan terjadi pemecahan granula pati, sehingga pati dengan kadar amilosa lebih tinggi, granulanya akan lebih banyak mengeluarkan amilosa.

Menurut Pomeranz (1991), kelarutan pati semakin tinggi dengan meningkatnya suhu, serta kecepatan peningkatan kelarutan adalah khas untuk tiap pati. Pola kelarutan pati dapat diketahui dengan cara mengukur berat supernatan yang telah dikeringkan dari hasil pengukuran swelling power. Solubilitas atau kelarutan pati tapioka lebih besar dibandingkan pati dari umbi-umbi yang lain.

4. Gelatinisasi Pati

Pomeranz (1991) menyatakan bahwa gelatinisasi merupakan proses pembengkakan granula pati ketika dipanaskan dalam media air. Granula pati tidak larut dalam air dingin, tetapi granula pati dapat mengembang dalam air panas. Naiknya suhu pemanasan akan meningkatkan pembengkakan granula pati. Pembengkakan granula pati menyebabkan terjadinya penekanan antara granula pati dengan lainnya. Mula-mula

pati menjadi irreversible (tidak dapat kembali). Kondisi pembengkakan granula pati yang bersifat irreversible ini disebut dengan gelatinisasi, sedangkan suhu terjadinya peristiwa ini disebut dengan suhu gelatinisasi. Menurut Winarno (2002) dan Pomeranz (1991), suhu gelatinisasi tepung tapioka berada pada kisaran 52-64°C. Menurut Swinkels (1985), suhu gelatinisasi tepung tapioka berkisar antara 65-70°C.

Moorthy (2004) menyatakan bahwa gelatinisasi merupakan fenomena kompleks yang bergantung dari ukuran granula, persentase amilosa, bobot molekul, dan derajat kristalisasi dari molekul pati di dalam granula. Pada umumnya granula yang kecil membentuk gel lebih lambat sehingga mempunyai suhu gelatinisasi yang lebih tinggi daripada granula yang besar. Makin besar bobot molekul dan derajat kristalisasi dari granula pati, pembentukkan gel semakin lambat. Menurut Pomeranz (1991), tidak semua granula pati tergelatinisasi pada titik yang sama, tetapi terjadi pada suatu kisaran suhu tertentu. Menurut Olkku dan Rha (1978) dalam Pomeranz (1991), proses gelatinisasi melibatkan peristiwa- peristiwa sebagai berikut: (1) hidrasi dan swelling (pengembangan) granula; (2) hilangnya sifat birefringent; (3) peningkatan kejernihan; (4) peningkatan konsistensi dan pencapaian viskositas puncak; (5) pemutusan molekul-molekul linier dan penyebarannya dari granula yang telah pecah.

Suhu gelatinisasi tergantung pada konsentrasi dan pH larutan pati. Makin kental larutan, suhu gelatinisasi makin sulit tercapai. Bila pH terlalu tinggi, pembentukan gel semakin cepat tercapai tetapi cepat turun lagi. Pembentukan gel optimum pada pH 4-7. Selain itu, penambahan gula juga berpengaruh terhadap kekentalan gel yang terbentuk. Gula akan menurunkan kekentalan, hal ini disebabkan karena gula dapat mengikat air, sehingga pembengkakan butir-butir pati menjadi lebih lambat, akibatnya suhu gelatinisasi akan lebih tinggi. Adanya gula akan menyebabkan gel lebih tahan terhadap kerusakan mekanik (Winarno, 2002).

Pati singkong atau tapioka memiliki suhu gelatinisasi yang sangat rendah, lebih rendah dari pati umbi-umbian yang lain maupun pati sereal.

Menurut Pomeranz (1991), suhu gelatinisasi tapioka berkisar antara 52- 64°C.

5. Retrogradasi Pati

Retrogradasi adalah proses kristalisasi kembali pati yang telah mengalami gelatinisasi. Beberapa molekul pati, khususnya amilosa yang dapat terdispersi dalam air panas, meningkatkan granula-granula yang membengkak dan masuk ke dalam cairan yang ada di sekitarnya. Oleh karena itu, pasta pati yang telah mengalami gelatinisasi terdiri dari granula-granula yang membengkak yang tersuspensi ke dalam air panas dan molekul-molekul amilosa yang terdispersi ke dalam air. Molekul- molekul amilosa tersebut akan terus terdispersi, asalkan pati tersebut dalam kondisi panas. Dalam kondisi panas, pasta masih memiliki kemampuan mengalir yang fleksibel dan tidak kaku. Bila pasta pati tersebut kemudian mendingin, energi kinetik tidak lagi cukup tinggi untuk melawan kecenderungan molekul-molekul amilosa untuk bersatu kembali. Molekul-molekul amilosa berikatan kembali satu sama lain serta berikatan dengan cabang amilopektin pada pinggir-pinggir luar granula, dengan demikian mereka menggambungkan butir-butir pati yang bengkak tersebut menjadi semcam jaring-jaring membentuk mikrokristal dan mengendap (Winarno, 2002).

Menurut Fleche (1985), ketika molekul pati sudah benar-benar terhidrasi, molekul-molekulnya mulai menyebar ke media yang ada di luarnya dan yang pertama keluar adalah molekul-molekul amilosa yang memiliki rantai pendek. Keluarnya molekul-molekul amilosa ini menyebabkan terjadinya presipitasi (jika konsentrasi pati rendah) atau membentuk gel (jika konsentrasi pati tinggi).

Menurut Swinkels (1985), retrogradasi pasta pati atau larutan pati memiliki beberapa efek sebagai berikut: (1) peningkatan viskositas; (2) terbentuknya kekeruhan; (3) terbentuknya lapisan tidak larut dalam pasta

adalah proses yang kompleks dan dipengaruhi oleh beberapa faktor, antara lain jenis dan konsentrasi pati, prosedur pemasakan, suhu, waktu peyimpanan, prosedur pendinginan, pH, dan keberadaan komponen lain.

E. KACANG SALUT

Kacang salut adalah kacang yang disalut dengan tepung dan bumbu- bumbu kemudian digoreng hingga matang. Dalam pembuatan kacang salut, tepung yang digunakan biasanya adalah tepung tapioka ataupun tepung- tepungan lain seperti tepung terigu maupun tepung telur yang dapt memberikan tekstur sesuai dengan keinginan.

Tepung yang digunakan diharapkan akan menghasilkan penyalut yang mengembang dan memiliki kerenyahan yang baik. Oleh karena itu, untuk memperkirakan pengembangan tepung biasanya dilakukan analisis tingkat pengembangan tepung dengan membuat produk berupa papatan. Papatan

merupakan adonan tepung tanpa kacang yang dibentuk bulat-bulat kecil, baik dalam keadaan sebelum digoreng maupun setelah digoreng.

Salah satu kriteria mutu terpenting dari kacang salut adalah kerenyahan. Kerenyahan kacang salut dapat dianalisis dengan menggunakan alat texture analyzer. Gaya (force) yang dinilai untuk kerenyahan adalah pada puncak pertama di mana sampel mulai berubah bentuk (deformasi). Menurut Anonim (2005), untuk mengukur kerenyahan (fracturability) tidak hanya dilihat dari gaya (force) untuk mendeformasi sampel tetapi juga dilihat jarak saat gaya mulai menekan sampel (distance). Anonim (2005) menambahkan, jika hasil pengukuran sampel memiliki gaya (force) yang sama dengan jarak (distance) yang berbeda-beda, maka sampel yang paling renyah adalah sampel dengan jarak (distance) yang terdekat. Sebaliknya, jika hasil pengukuran sampel memiliki jarak (distance) yang sama, dengan gaya (force) yang berbeda-beda, maka sampel yang paling renyah adalah sampel dengan gaya (force) terendah. Pada Gambar 4 dapat dilihat contoh grafik hasil pengukuran tekstur dengan

Gambar 4. Grafik hubungan antara gaya (force)dan jarak (distance)

Anonim (2005) menambahkan, untuk membandingkan kerenyahan antara dua sampel yang memiliki gaya (force) dan jarak (distance) yang berbeda, dapat digunakan uji organoleptik untuk mengetahui sampel yang memiliki kerenyahan lebih tinggi.

F. ANALISIS KORELASI

Analisis korelasi mencoba mengukur kekuatan hubungan antara dua peubah (X dan Y) melalui sebuah bilangan yang disebut koefisien korelasi (r). Jadi, r mengukur sejauh mana titik-titik menggerombol di sekitar sebuah garis lurus. Bila titik-titk bergerombol mengikuti sebuah garis lurus dengan kemiringan positif, maka ada korelasi positif yang tinggi antara kedua peubah. Akan tetapi, bila titik-titik bergerombol mengikuti sebuah garis lurus dengan kemiringan negatif, maka antara kedua peubah tersebut terdapt korelasi negatif. Hubungan linier sempurna antara kedua peubah terdapat bila nilai r = 1 atau r = -1. Koefisien korelasi antara dua peubah adalah suatu ukuran hubungan linier antara kedua peubah tersebut. (Walpole, 1995).

variabel bebas tersebut. Sifat korelasi menentukan arah dari korelasi. Keeratannya dapat dikelompokan sebagai berikut: (1) bila r = 0.00-0.20 berarti korelasi memiliki keeratan sangat lemah; (2) bila r = 0.21-0.40 berarti korelasi memiliki keeratan lemah; (3) bila r = 0.41-0.70 berarti korelasi memiliki keeratan kuat; (4) bila r = 0.71-0.90 berarti korelasi memiliki keeratan sangat kuat; (5) bila r = 0.91-0.99 berarti korelasi memiliki keeratan sangat kuat sekali; (6) bila r = 1 berarti korelasi sempurna.

III. METODOLOGI

A. BAHAN DAN ALAT

Bahan utama yang digunakan dalam penelitian ini adalah enam jenis tepung tapioka dengan kode tapioka A, tapioka B, tapioka C, tapioka D, tapioka E, dan tapioka F, yang diperoleh dari dua jenis pemasok (industri rumah tangga dan industri besar) serta MOCAL (Modified Cassava Fluor) yang diperoleh dari Koperasi Loh Jinawi Trenggalek. Bahan-bahan kimia yang digunakan adalah alkohol 95%, HCl 3%, H2SO4 25%, KI 20%, larutan Luff-Schoorl, NaOH 3%, indikator fenolftalen, indikator amilum 0.5%, Na2S2O3 0.1N, amilosa kentang, NaOH 1N, asam asetat 1N, KOH 0.2N, larutan Iod 0.01N, serta akuades.

Alat-alat yang digunakan antara lain cawan alumunium, oven, neraca analitik, desikator, ruang asap, pendingin tegak, erlenmeyer asah, buret, cawan porselen, tanur, Spectronic Instrumen 20D+ Spektrofotometer, waterbath, labu takar, kertas saring, Mettler Toledo MP220 pH-meter, kaca preparat dan gelas penutup, Olympus BH-2 Polarized Light Microscope, Kett Electric Laboratory C-100-3 Whitenessmeter, Stable Micro System TAXT2 Texture Analyzer, Brabender viscoamylograph OHG Duisburg Type 800121, sentrifusa,Digital sieve shaker, serta alat-alat gelas lainnya.

B. METODE PENELITIAN

Penelitian ini dilakukan melalui beberapa tahapan. Tahap pertama yaitu analisis sifat kimia dan fisik serta tingkat pengembangan tepung tapioka dan MOCAL. Tahap berikutnya yaitu aplikasi tepung tapioka dan MOCAL sebagai penyalut pada produk kacang salut. Selanjutnya dilakukan analisis tekstur (kerenyahan) pada semua produk kacang salut yang dihasilkan dari tiap sampel. Diagram alir tahapan penelitian ini disajikan dalam Gambar 6.

Gambar 6.Diagram alir tahapan penelitian

1. Analisis Kimia dan Fisik Tepung Tapioka dan MOCAL

Pada tahap ini dilakukan beberapa analisis sifat kimia dan fisik dari tepung tapioka dan MOCAL. Sifat kimia dan fisik yang diuji meliputi kadar air, kadar abu, kadar pati, kadar amilosa, nilai pH, bentuk dan ukuran pati, kehalusan, derajat putih, swelling power dan kelarutan pati, serta pola amilografi. Semua analisis dilakukan sebanyak dua kali pengukuran (dulplo), kecuali pada analisis kelarutan pati dan sifat amilografi hanya dilakukan sekali pengukuran (simplo). Pembahasan sifat fisik dan kimia antara tepung tapioka dan MOCAL dibedakan karena kedua produk tersebut berbeda.

2. Analisis Tingkat PengembanganPapatan

Tingkat pengembangan papatan dipelajari dengan mengukur volumepapatan saat sebelum digoreng maupun setelah digoreng. Terlebih dahulu dibuat larutan bumbu, yang kemudian diuleni bersama sampel sampai kalis sehingga terbentuk adonan tepung. Diagram alir pembuatan

Sampel tepung tapioka atau MOCAL

Analisis sifat kimia dan fisik Analisis tingkat pengembanganpapatan

Analisis tekstur dan uji organoleptik Aplikasi tepung sebagai penyalut

kacang (kacang salut)

larutan bumbu dapat dilihat pada Gambar 7, sedangkan diagram alir pembuatanpapatan dapat dilihat pada Gambar 8.

Gambar 7. Diagram alir pembuatan larutan bumbu

Larutan bumbu tapioka atau MOCALSampel tepung

Adonan Dicampur

Diuleni sampai kalis

Ditimbang 0.5 gram

Dibentuk bulat dan diukur diameternya (D1) Digoreng Papatan Premix tepung dan bumbu Larutan bumbu Dicampur Dipanaskan Air

Pembuatan papatan dilakukan sebanyak 30 kali agar data yang diperoleh lebih beragam dan dapat mewakili sampel. Diameter papatan

diukur menggunakan jangka sorong, baik pada saat sebelum digoreng (D1) maupun sesudah digoreng (D2). Volume papatan dihitung dengan asumsi bahwa papatan berbentuk lingkaran sempurna. Tingkat pengembangan sampel diukur dengan cara sebagai berikut:

Tingkat pengembangan (%) = V2 x 100% V1

Keterangan :

V1 = Volumepapatan sebelum digoreng (mm3) V2 = Volumepapatan setelah digoreng (mm3)

3. Analisis Kerenyahan Produk Kacang Salut

Larutan bumbu yang telah dicampur dengan tepung tapioka atau MOCAL dimasukkan ke dalam coating pan bersama kacang, kemudian kacang yang telah disalut oleh campuran larutan bumbu dan tepung tersebut digoreng. Diagram pembuatan kacang salut dapat dilihat pada Gambar 9.

Gambar 9. Diagram alir pembuatan kacang salut Larutan bumbu dicampur tepung tapioka atau MOCAL Digoreng Kacang Salut Dicampur Coating pan Kacang Kacang yang telah disalut

Analisis kerenyahan secara objektif terhadap kacang salut dilakukan dengan menggunakan alat Stable Micro System TAXT2 Texture Analyzer. Analisis kerenyahan secara subjektif dilakukan dengan uji organoleptik menggunakan ujirating.

C. METODE ANALISIS 1. Kadar Air (AOAC, 1995)

Cawan alumunium dikeringkan dalam oven pada suhu 105oC selama 15 menit, lalu didinginkan di dalam desikator selama 10 menit. Cawan ditimbang menggunakan neraca analitik (A). Sampel sebanyak 5 gram (W) dimasukkan ke dalam cawan, kemudian cawan serta sampel ditimbang dengan neraca analitik. Cawan berisi sampel dikeringkan dalam oven pada suhu 105oC selama 6 jam. Selanjutnya cawan berisi sampel didinginkan dalam desikator, kemudian ditimbang (Y). Setelah itu, cawan berisi sampel dikeringkan kembali dalam oven selama 15-30 menit, lalu ditimbang kembali. Pengeringan diulangi hingga diperoleh bobot konstan (selisih bobot ≤ 0.0003 gram). Kadar air diukur dengan cara sebagai berikut:

Kadar air = W – (Y – A ) x 100% W

Keterangan :

W = bobot sampel awal (g)

Y = bobot sampel dan cawan setelah dikeringkan (g) A = bobot cawan kosong (g)

2. Kadar Abu (AOAC, 1995)

Cawan pengabuan dibakar dalam tanur (5500C) selama 15 menit, kemudian didinginkan dalam desikator, dan ditimbang (A). Sampel sebanyak 2-3 gram (W) ditimbang dalam cawan tersebut, kemudian cawan

6 jam. Cawan yang berisi sampel didinginkan dalam desikator, kemudian ditimbang dengan neraca analitik (X). Kadar abu diukur dengan cara sebagai berikut:

Kadar abu (%) = (X - A) x 100% W

Keterangan :

W = bobot sampel awal (g)

X = bobot sampel dan cawan setelah dikeringkan (g) A = bobot cawan kosong (g)

3. Kadar Pati (SNI 01-2892-1992)

Dokumen terkait