• Tidak ada hasil yang ditemukan

KAJIAN LITERATUR

2.4 Komponen anod komposit SOFC

2.4.1 Kaedah pembentukan komponen anod

2.4.1.1 Kaedah penekanan ekapaksi

Kaedah penekanan ekapaksi biasanya merupakan pilihan untuk fabrikasi sel bersokong anod SOFC yang digunakan dalam penyelidikan skala makmal. Biasanya, kaedah ini tidak digunakan untuk fabrikasi berskala besar. Menurut penyelidikan Jared (2010), faktor utama yang menjejaskan kekuatan awal kepadatan ialah kandungan lembapan, dan daya penekanan. Daya yang berlebihan semasa pemadatan ialah retak bahagian tepi manakala daya yang tidak mencukupi menyebabkan retak melalui badan cakera. Selain daripada itu, Jared juga mendapati serbuk yang dipadatkan akan melekat pada acuan dan ia akan berderai apabila dipadatkan semula pada hari lembap. Bukan sahaja kekuatan awal terjejas semasa fabrikasi, tetapi prestasi SOFC juga boleh turut terjejas dengan melaraskan tekanan pemadatan seperti yang dilihat dalam kajian oleh (Lee et al, 2004). Dalam kajian mereka, mereka dapati keseimbangan antara kekonduksian dan kebolehtelapan berlaku pada kira-kira 4MPa.

RUJUKAN

Abbas, G., Chaudhry, M.A., Raza, R., Singh, M., Liu, Q., Qin, H., & Zhu, B. (2012). Study of CuNiZnGdCe-nanocomposite anode for low temperature sofc.

Nanoscience and Nanotechnology Letters, 4, 389–393.

Beckel, D, Bieberle-Huetter, A., Harvey, A., Infortuna, A., Muecke, U.P., Prestat, M., Rupp, J.L.M. & Gauckler, L.J.J. (2007). Thin films for micro solid oxide fuel cells. Journal of Power Sources, 173, 325-345.

Bodén, A., Di, J., Lagergren, C., Lindbergh, G., & Wang, C. Y. (2007). Conductivity of SDC and (Li/Na)2CO3 composite electrolytes in reducing and oxidising atmospheres. Journal of Power Sources, 172(2), 520–529.

Boer, B.D., Gonzalez, M., Bouwmeester, H.J.M., & Verweij, H. (2000). The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes. Solid State Ionics, 127(3-4), 269-276.

Brandon, N.P., Skinner, S., & Steele, B.C.H. (2003). Recent advances in materials for fuel cells. Annual Review of Materials Research, 33, 183–213.

Brett, D.J.L, Atkinson, A., Brandon, N.P., & Skinner, S.J. (2008). Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 37(8), 1568 -1578.

Camaratta, M., & Wachsman, E. (2007). Silver–bismuth oxide cathodes for IT-SOFCs; Part I — Microstructural instability. Solid State Ionics, 178(19-20), 1242–1247.

Carrette, L., Friedrich, K.A., & Stimming, U. (2001). Fuel cells-fundamental and applications. Physical Chemistry, 1(1), 5-39.

Chavan, A. U., Jadhav, L. D., Jamale, a. P., Patil, S. P., Bhosale, C. H., Bharadwaj, S. R., & Patil, P. S. (2012). Effect of variation of NiO on properties of NiO/GDC (gadolinium doped ceria) nano-composites. Ceramics International, 38(4), 3191– 3196.

Chen, Y., & Cheng, W.J. Wei (2006). Processing and characterization of ultra-thin yttria-stabilized zirconia (YSZ) electrolytic films for SOFC. Solid State Ionics, 177, 351-357.

Chen, M., Kim, B. H., Xu, Q., & Ahn, B. G. (2009). Preparation and electrochemical properties of Ni–SDC thin films for IT-SOFC anode. Journal of Membrane

Science, 334(1-2), 138–147.

Christie, G.M. & Huijsmans J.P.P. in: Stimming U, Singhal S.C, Tagawa H, & Lehnert W (Eds.) (1997). Proceedings of the fifth international symposium on solid oxide

fuel cells (SOFC-V). The electrochemical society; Pennington, New Jersey. pp.

718.

Costa-Nunes, O., Gorte, R.J. & Vohs, J.M. (2005). Comparison of the performance of Cu-CeO2–YSZ and Ni–YSZ composite SOFC anodes with H2, CO, and syngas.

Journal of Power Sources, 141(2), 241-249.

Drozdz, C.E., Wyrwa, J., Pyda, W., & Rekas M. (2012). A new method of preparing Ni/YSZ cermet materials. Journal of Materials Science, 47(6), 2807-2817.

82 EG & G technical services (2004). Fuel cell handbook. West Virginia : EG & G

Technical services Inc. ms 7-12.

Fan, L., Chen, M., Wang, C., & Zhu, B. (2012). Pr2NiO4–Ag composite cathode for low temperature solid oxide fuel cells with ceria-carbonate composite electrolyte.

International Journal of Hydrogen Energy, 37(24), 19388–19394.

Fergus, J.W., Hui R., Li X., Wilkinson D.P. & Zhang J (2009). Solid oxide fuel cells

materials properties and performance. New York: CRC Press.

Frano Barbir (2013). PEM fuel cells: Theory and practice. Oxford, London : Academic press.copyright. ms 3-4.

Fukui, T., Ohara, s.,Naito,M. & Nogi, K. (2002). Performance and stability of SOFC anode fabricated from NiO–YSZ composite particles. Journal of Power Sources,

110(1), 91–95.

Fukui, T., Murata, K., Ohara, S., Abe, H., Naito, M.,& Nogi, K. (2004). Morphology control of Ni-YSZ cermet anode for lower temperature operation of SOFCs.

Journal of Power Sources, 125(1), 17-21.

Gardner, F.J., Day, M.J., Brando,n N.P., Pashley, M.N., & Cassidy, M. (2000). SOFC technology development at Rolls-Royce. Journal of Power Sources, 86(1-2), 122–129.

Gao, D., Zhao, w., J., Ran, R., & Shao, Z. (2011). Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3−δ membranes. Journal of Membrane Science, 366, 203-211.

Gorte, R.J. & Vohs, J.M, (2003). Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. Journal of Catalysis, 216(1-2), 477–486.

Hamimah A.R, Andanastuti M, Norhamidi M, & Huda A (2013). La0.6Sr0.4Co0.2Fe0.8O3 —SDC carbonate composite cathodes for low-temperature. Materials Chemistry

and Physics, 141, 752-757.

Honegger, K., Batawi, E., Sprecher, C., & Diethelm, R., dalam : Stimming, U., Singhal, S.C., Tagawa, H., & Lehnert, W. (Eds.)( 1997). Proceedings of the fifth

international symposium on solid oxide fuel cells (SOFC-V). The

Electrochemical society; Pennington, New Jersey. pp. 321.

Hongxing, H. & Meilin, L.(1996). Silver-BaCe0.8Gd0.203 composites as cathode materials for SOFCs Using BaCeO3-based electrolytes. Journal of Electrochemical

Society, 143(3), 859-863.

Horita, T., Yamaji, K., Sakai, N., Xiong, Y., Kato, T., Yokokawa, H., & Kawada, T. (2002). Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique. Journal of Power Sources, 106, 224–230.

Horri, B.A., Selomulya, C. & Wang, H. (2012). Characteristics of Ni/YSZ ceramic anode prepared using carbon microspheres as a pore former. International

Journal of Hydrogen Energy 37(2), 15311-15319.

Hosomi, T., Matsuda, M., & Miyake, M. (2007). Electrophoretic deposition for fabrication of YSZ electrolyte film on non-conducting porous NiO-YSZ composite substrate for intermediate temperature SOFC. Journal of European Ceramic Society, 27, 173-178.

84 Hu, H., & Liu, M. (1996). Silver-BaCe0.8Gd0.203 composites as cathode materials for sofcs using baceo3-based electrolytes. Journal of Electrochemical Society, 143(3), 859-854.

Hu, J.D., Tosto, S., Guo, Z.X., & Wang, Y.F., (2006). Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: A quantitative DEMS study.

Journal of Power Sources, 154 (1), 106.

Huang, J.B., Mao, Z.Q., Yang, L.Z., & Peng, R.R. (2005). SDC-Carbonate composite electrolytes for low-temperature SOFCs. Electrochemical Solid State Letter, 8(9), A437–A440.

Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., & Prinz, F.B.J. (2007). High-performance ultrathin solid oxide fuel cells for low-temperature operation. Journal

of Eectrochemical Society, 154(1), B20-B24.

Huang, J., Mao, Z., Liu, Z., & Wang, C. (2007). Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes.

Electrochemistry Communications, 9(10), 2601–2605.

Huang, J., Mao, Z., Liu, Z., & Wang, C. (2008). Performance of fuel cells with proton-conducting ceria-based composite electrolyte and nickel-based electrodes. Journal

of Power Sources, 175(1), 238–243.

Huang, J., Gao, Z.. & Mao, Z. (2010). Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. International Journal of Hydrogen Energy, 35(9), 4270-4275.

Huang, J., Xie, F., Wang, C., & Mao, Z. (2012). Development of solid oxide fuel cell materials for intermediate-to-low temperature operation. International Journal of

Hydrogen Energy, 37(1), 877–883.

Huijser, A. & Schoonman (2005). Materials for intermediate-temperature solid oxide fuel cells and for proton exchange membrane fuel cells. Journal of

Environmental Engineering and Management, 4(3), 293 -305.

Itoh, H., Yamamoto, T., Mori, M., Horita, T., Sakai, N., Yokokawa, H. & Dokiya, M. (1997). Configurational and electrical behavior of Ni-YSZ cermet with novel microstructure for solid oxide fuel cell anodes. Journal of Electrochemical

Society, 14(2), 641-646.

Jardiel, T., Caldes, M.T., Moser, F., Hamon, J., Gauthier, G. & Joubert, O. (2010). New SOFC electrode materials: The Ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5 − xNix)O3 − δ and (La0.75Sr0.25)(Cr0.5 − xNixMn0.5)O3 – δ. Solid State Ionics, 181(19-20), 894-901.

Jared R. M. (2010). Fabrication and analysis of compositionally graded functional

layers for solid oxide fuel cells. Wright State University. Thesis of master's

degree.

Jarot, R., Andanastuti, M., Wan Ramli, W. D., Norhamidi, M., & Edy Herianto, M. (2010). Fabrication of Dense Composite Ceramic Electrolyte SDC-(Li/Na)2CO3.

Key Engineering Materials, 447-448, 666–670.

Jarot, R., Muchtar, A., Wan Daud, W. R., Muhamad, N., & Majlan, E. H. (2011). Porous NiO-SDC carbonates composite anode for LT-SOFC applications produced by pressureless sintering. Applied Mechanics and Materials, 52-54, 488–493.

86 Jarot, R., Muchtar, A., Wan Daud, W. R., Muhamad, N., & Majlan, E. H. (2012). Pencirian fizikal dan terma komposit seramik Elektrolit. Sains malaysiana, 41(1), 95–102.

Jing, D., Mingming, C., Chengyang, W., Jiaming, Z., Liangdong, F., & Bin, Z. (2010). Samarium doped ceria–(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell. Journal of

Power Sources, 195, 4695–4699.

Jiang, S.P. (2012). Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges. International Journal of Hydrogen Energy

37 (1), 449-470.

Julia, o., Benjamin, V., Yixiang, G., Robert, M., & Marc K. (2013). A micromechanical model for effective conductivity in granular electrode structures. Acta Mechanica

Sinica, 29(5), 682–698.

Kawada, T., Sakai, N., Yokokawa, H., Dokiya, M., Mori, M. & Iwata, T. (1990). Characteristics of slurry‐coated nickel zirconia cermet anodes for solid oxide fuel cells. Journal of Electrochemical Society, 137(10), 3042-3047.

Kawada, T., Sakai N., Yokokawa, H., Dokiya, M., Mori, M. & Iwata, T. (1990). Structure and polarization characteristics of solid oxide fuel cell anodes. Solid

State Ionics, 40-41(1), 402-406.

Kilius, L. B. (2009). Effect of carbonate addition on cobaltite cathode performance. Queen‟s University, Canada. Thesis degree of doctor of philosophy.

Kokai, F., Amano, K., Ota, H., Ochiai, Y. & Umemura, F. (1992). XeCl laser ablative deposition and characterization of yttria‐stabilized zirconia thin films on glass and CeO2‐Sm2O3.Journal of Applied Physics, 72(2), 699.

Kordesch, K. & Simader, G. (1996). Fuel Cell and their applications. New York : VCH Publishers Inc. ms 151-290

Lee, J.H., Heo, J.W., Lee, D.S., Kim, J., Kim, G.H., Lee, H.W., Song, H.S., & Moon, J.H. (2003). The impact of anode microstructure on the power generating characteristics of SOFC. Solid State Ionics, 158, 225-232.

Lee, D.S., Lee, J.H., Kim, J., Lee, H.W. & Song, H.S. (2004). Tuning of the microstructure and electrical properties of SOFC anode via compact pressure control during forming. Solid State Ionics, 166(1-2), 13-17.

Lide, D.R (2005-2006). CRC Handbook of Chemistry and Physics 8th ed. CRC Press, Taylor & Francis, Boca Raton, FL 2005, 4-70.

Liu, Q.L., Khor, K.A., & Chan, S.H. (2006). High-performance low-temperature solid oxide fuel cell. Journal of power sources, 161(1), 123.

Liou & Worrell, W. L. (1989). Proceedings of 1st international symposium on SOFC.

The electrochemical society proceedings series. Pennington, NJ : Singhal, S. C.

pp.81.

Marta, S. Basualdo, Diego F., & Rachid O. (2011). PEM fuel cells with bio-ethanol

processor systems: a multidisciplinary study of modeling, simulation, fault diagnosis and advanced control. Springer. Copyright. ms 6.

Matula, G., Jardiel, T., Jimenez, R., Levenfeld, B., & Várez, A. (2008). Microstructure , mechanical and electrical properties of Ni-YSZ anode supported solid oxide fuel cells. Achieve of Materials Science and Engineering, 32(1), 21–25.

Mclntosh, S. & Gorte, R.J. (2004). Direct hydrocarbon solid oxide fuel cells. Chemical

88 Mosialek, M., Tatko, M., Dudek, M., Bielańska, E., & Mordarski, G. (2013). Composite Ag-La0.6Sr0.4Co0.8Fe0.2O3-δ cathode material for solid oxide fuel cells, preparation and characteristic. Archives of Metallurgy and Materials, 58(4), 8–12.

Muhammed Ali, S.A., Muchtar, A., Muhamad, N. & Sulong A.B. (2011). A review on

preparation of SDC-carbonate as composite electrolyte material for intermediate temperature solid oxide fuel cells (IT-SOFC). Conference on clean energy and

technology CET. Pp. 394-399.

Muhammed, S.A., Ali, Muchtar, A., Sulong, A.B., Muhamad, N. & Majlan, E.N. (2013). Influence of sintering temperature on the power density of samarium doped-ceria carbonate electrolyte composites for low-temperature solid oxide fuel cell.

Ceramics International, 39, 5813–5820.

Muranaka, M., Sasaki, K., Suzuki, A. & Terai T. (2009). LSCF–Ag cermet cathode for intermediate temperature solid oxide fuel cells. Journal of Electrochemical Society,

156(6), B743-B747.

Needham, S.A., Wang, G.X., Konstantinov, K., Tournayre, Y., Lao, Z. & Liu, H.K. (2006). Electrochemical performance of Co3O4–C composite anode materials,

Electrochemical and Solid-State Letters, 9(7), A315-A319.

Noriko Hikosaka Behling (2012). Fuel cells: current technology challenges and future

research needs. Netherlands : Newnes. Copyright. ms 12.

Ormerod R. M. (2003). Solid oxide fuel cells. Chemical Society Reviews, 32(1), 17-28.

Park, S., Vohs, J.M. & Gorte, R.J. (2000). Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 404, 265-267.

Pihlatie, Ramos, M., & Kaiser, T. (2009). Testing and improving the redox stability of Ni-based solid oxide fuel cells. Journal of Power Sources, 193(1), 2322-330.

Pratihar, S.K., Dassharma, A., & Maiti, H.S. (2005). Processing microstructure property correlation of porous Ni-YSZ cermet anode for SOFC application. Material

Research Bulletin, 40(11), 1936–1944.

Qi, L. J., Liu, W. Y., & Wang, H. Y. (2013). Influence of Size of NiO-SDC on the electrochemical properties for SOFC Anodes. Advanced Materials Research,

798-799, 120–124.

Rahman, H. A., Muchtar, A., Muhamad, N., & Abdullah, H. (2012). Structure and thermal properties of La0.6Sr0.4Co0.2Fe0.8O3−δ–SDC carbonate composite cathodes for intermediate-to low-temperature solid oxide fuel cells. Ceramics International,

38(2), 1571–1576.

Raza, R., Wang, X., Ma, Y., Liu, X., & Zhu, B. (2010). Improved ceria–carbonate composite electrolytes. International Journal of Hydrogen Energy, 35(7), 2684– 2688.

Ryan, O., Suk-Won, C., Whitney, C. & Fritz, B.P. (2009). Fuel cell fundamentals. John wiley & sons, INC.ms 576.

Sakitou, Y., Hirano, a., Imanishi, N., Takeda, Y., Liu, Y., & Mori, M. (2008). La0.6Sr0.4Co0.2Fe0.8O0.3-Ag composite cathode for intermediate-temperature solid oxide fuel cells. Journal of Fuel Cell Science and Technology, 5(3), 031207.

Sammes, N.M., Brown, M.S., & Ratnaraj, R. (1994). Wet powder spraying of a cermet anode for a planar solid oxide fuel cell system. Journal of Materials Science

90

Sato, K., Okamoto, G., Naito, M. & Abe, H. (2009). NiO/YSZ. Nanocomposite particles

synthesized via co-precipitation method for electrochemically active Ni/YSZ anode. Journal of Power Sources, 193(1), 185–188.

Shim, J.H., Chao C., Huang, H., & Prinz, F.B. (2007). Atomic layer deposition of Yttria-stabilized Zirconia for solid oxide fuel cells. Journal of Chemistry of Materials,

19(15), 3850-3854.

Sids, O., Carbonate, S., & Publications, U. (n.d.). introduction sodium carbonate cas N ° : 497-19-8, 1–85.

Simwonis, D., Thulen, H., Dias, F.J., Naoumidis, A. & Stover, D. (1999). Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix process. Journal of Material Processing Technology, 92-93, 107–111.

Singhal, S.C. & kendall, k. (2003). High temperature solid oxide fuel cells:

Fundamentals, design and applications. Oxford, London: Elsevier copyright. ms.

1-2.

Singhal S.C. (2000). Advances in solid oxide fuel cell technology. Solid State

Ionics,135, 305–313.

Singh, P. & Minh, N.Q. (2004). Solid Oxide Fuel Cells: Technology Status.

International Journal of Applied Ceramic Technology, 1(1), 5–15.

Skalar, T., Zupan, K., Marinšek, M., Novosel, B., & Maček, J. (2014). Microstructure evaluation of Ni–SDC synthesized with an innovative method and Ni–SDC/SDC bi-layer construction. Journal of The European Ceramic Society, 34(2), 347–354..

Song, J.H., Park, M.Y., Park, H.W. & Lim, H.T. (2013). Single-step preparation of nano-homogeneous NiO/YSZ composite anode for solid oxide fuel cells.

Nano-Micro Letters, 5(2), 111-116.

Søren Primdahl (1999). Nickel/yttria-stabilised zirconia cermet anodes for solid oxide

fuel cells. University of Twente. Thesis of PhD.

Steel B.C.H (2000). Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics, 129(1-4), 95–110.

Steele B.C.H and Heinzel A (2001). Materials for fuel-cell technologies. Nature, 414 (6861), 345-352.

Steven S.C.C. (2005). Catalysis of solid oxide fuel cells. Catalysis, 18(1), 186-198.

Stover D, Diekmann U, Flesch U, Kabs H, Quadakkers W.J, Tietz F, and Vinke I.C, in: S.C. Singhal &M. Dokiya (Eds.) (1999). Proceedings of the Sixth International

Symposium on Solid Oxide Fuel Cells (SOFC-VI). The Electrochemical Society;

Pennington, New Jersey. pp. 813.

Suciu, C., Alex, C.. Hoffmann & Pawel Kosinski (2008). Obtaining YSZ nanoparticles by the sol-gel method with sucrose and pectin as organic precursors. Materials

Processing Technology, 202(1-3), 316–320.

Suwanwarangkul, R., Croiset, E., Fowler, M., Douglas, P., Entchev, E., & Douglas M. Performance comparison of Fick's, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode. Journal of Power

Sources, 122, 2003, 9-18.

Tietz, F., Buchkremer, H.P. & Stover, D. (2002). Components manufacturing for solid oxide fuel cells. Solid State Ionics, 152-153, 373–381.

92 Tintinelli, .A, Rizzo, C. & Giunta, G. (1994). Ni-YSZ porous cermets : microstructure and electrical conductivity. Proceedings of the first European solid oxide fuel

cell forum. Lucerne; Switzerland. pp. 455-464.

V.A.C. Haanappel, D. Rutenbeck, A. Mai, S. Uhlenbruck, D. Sebold, H.Wesemeyer, B. Röwekamp, C. Tropartz, and F. Tietz (2004). The influence of noble-metal-containing cathodes on the electrochemical performance of anode-supported SOFCs. Journal of Power Sources, 130, 119–128.

Vol, R. M., Jigui, C., Liping, D., Ping, S. H. I., & Guangyao, M. (2007). Properties and microstructure of NiO / SDC materials for SOFC anode applications. Rare Metals,

26(2), 110–117.

Vollath, D, Szab, DV, & Hau, J. (1997). Synthesis and properties of ceramic nanoparticles and nanocomposites. Journal of European for Ceramic Society,

17(11), 1317–24.

Wang, X., Nakagawa, N. & Kato, K. (2001). Anodic polarization related to the ionic conductivity of zirconia at ni-zirconia/zirconia electrodes. Journal of

Electrochemical Society, 148(6), A565–A569.

Wilson, J.R., Kobsiriphat, W., Mendoza, R., Chen, H.Y., Hiller, J.M., Miller, D.J., Thornton, K., Voorhees, P.W., Adler, S.B. & Barnett, S.A. (2006). Three-dimensional reconstruction of a solid oxide fuel-cell anode . Journal of Nature

Material, 5, 541–544.

Wang, Y., Walter, M.E., Sabolsky, K. & Seabaugh, M.M. (2006). Effects of powder sizes and reduction parameters on the strength of Ni-YSZ anodes. Solid State

Xia, C. & Liu M. (2001). Low-temperature SOFCs based on Gd0.1Ce0.9O1.95–δ (GDC) fabricated by dry pressing. Solid State Ionics, 144 (3), 249-255.

Yang, L., Zuo C., Wang, S., Cheng, Z., & Liu, M. (2008). A Novel composite cathode for low-temperature sofcs based on oxide proton conductors. Advanced

Materials 20(17), 3280- 3283.

Young, M.K. & Gyeong M.C. (1999). Microstructure and electrical properties of YSZ– NiO composites, Solid State Ionics, 120, 265–274.

Zabihian, F. & Alan, F. (2009). A Review on modeling of hybrid solid oxide fuel cell systems. International Journal of Engineering, 3(2), 85-119.

Zhang, Y., Liu B., Tu, B., Dong, Y. & Cheng, M. (2005). Redox cycling of Ni- YSZ anode investigated by TPR technique. Solid State Ionics, 176(29-30), 2193-2199.

Zhangbo, L., Beibei, L., Dong, D., Mingfei, L., Fanglin, C. & Changrong, X., (2013). Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/ infiltration technique. Journal of Power Sources, 237, 243-259.

Zhao, F. & Virkar, A (2005). Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameter. Journal of Power Sources, 141, 79-95.

Zhong, W.Z. and Mi, Y. (2004). Perspectives on the metallic interconnects for solid oxide fuel cells. Journal of Zhejiang University Science, 5(12), 1471-1503.

Zhu, B., Liu, X.R., Zhou, P., Yang, X.T., Zhu, Z.G. & Zhu, W. (2001). Innovative solid carbonate–ceria composite electrolyte fuel cells. Electrochemistry Communication, 3(10), 566-571.

94 B. Zhu (2003). Functional ceria-salt-composite materials for advanced ITSOFC

applications. Journal of Power Sources, 114, 1-9.

Zhu, B. Yang, X.T., Xu, J., Zhu, Z.G, Ji, S.J., Sun, M.T. & Sun, J.C. (2003). Innovative low temperature SOFCs and advanced materials. Journal of Power Sources,

Dokumen terkait