• Tidak ada hasil yang ditemukan

Menghitung Nilai TOPSIS

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Berdasarkan analisis data yang telah dilakukan dalam penelitian ini, maka diperoleh kesimpulan sebagai berikut.

1. Terjadi bleeding pada varian R6 dan R8 dimana kandungan glass powder sangat tinggi. Karena itu bisa disimpulkan bahwa penambahan glass powder tidak mengatasi masalah bleeding. Seperti penelitian terdahulu yang membuktikan bahwa glass powder menyerap sedikit air.

2. Menurut hasil single-response, silica fume memberikan pengaruh yang besar terhadap slump flow, dengan kata lain glass powder juga mempengaruhi slump flow. Dimana menurut penelitian sebelumnya, membuktikan bahwa dengan penambahan glass powder, mampu meningkatkan workability pada beton.

3. Perubahan jumlah agregat sangat mempengaruhi flow ability dari beton. Dengan perubahan sebesar 10% memberikan efek sebesar 0,047 pada test L-box menurut perbandingan hasil single-response dan multi-response. 4. Perubahan viscocrete memberikan pengaruh pada porositas seperti yang

ditunjukkan pada single-response (dengan kadar 1,2%) dan multi-response (dengan kadar 1%), dimana estimasi porositas pada kadar viscocrete lebih banyak menunjukkan porositas yang lebih kecil.

5. Komposisi dengan kerikil 45%, glass powder 15%, silica fume 40% dan viscocrete 1% menunjukkan hasil yang paling optimum dalam tiap respon. Hasil konfirmasi multi-respon masih dalam range.

5.2. Saran

Berdasarkan analisis data yang telah dilakukan dalam penelitian ini, maka diberikan saran sebagai berikut.

1. Perlu dilakukan percobaan tanpa penggunaan plastimen vz, karena terjadinya gelembung dicurigai akibat kombinasi dari glass powder, viscocrete, dan plastimen vz.

96

2. Perlu dilakukan trial taguchi dengan level dan faktor yang berbeda untuk mendapatkan signifikansi dan optimasi terhadap V-funnel test.

99 DAFTAR PUSTAKA

ASTM C 42M – 03. (2003). “Standart test method for obtaining and testing drilled cores and sawed beams of concrete”, West Conshohocken: ASTM

International.

ASTM C 117 – 95. (1995). “Standard test method for materials finer than 75-μm

(No. 200) Sieve in Mineral Agregates by washing”, West Conshohocken:

ASTM International.

ASTM C 127 – 01. (2001). “Standard test method for density, relative density

(specific gravity), and absorption of coarse agregate”, West

Conshohocken: ASTM International.

ASTM C 128 – 01. (2001). “Standart test method for density, relative density

(spesific gravity), and absorption of fine agregate”, West Conshohocken:

ASTM International.

ASTM C 131 – 03. (2003). “Standard test method for resistance to degradation of

samll-size coarse agregate by abration and impact in the Los Angeles machine”, West Conshohocken: ASTM International.

ASTM C 136 – 01.(2001). “Standard test method for sieve analysis of fine and

coarse agregates”, West Conshohocken: ASTM International.

ASTM C 192/C 192M – 02. (2002). “Standard practice for making and curing

concrete test specimens in the laboratory”, West Conshohocken: ASTM

International.

ASTM C 29/C 29M – 97. (1997). “Standard test method for bulk density (unit

weight) and voids in agregate”, West Conshohocken: ASTM International.

ASTM C 39/C 39 M – 01. (2001). “standart test method for compresive strength of

cylindrical concrete specimen”, West Conshohocken: ASTM

International.

ASTM C 566 – 97. (1997). “Standart test method for total evaporable moisture

content of agregate by drying”, West Conshohocken: ASTM International.

ASTM C40 – 99. (1999). “Standard test method for organic impurities in fine

100

Bentz, D & Jensen, O. (2004). “Mitigation strategies for autogeneous shrinkage

cracking”. ELSEVIER, 26(6), pp. 677-685.

Bouhamou, N.E., Belas, N., Bendani, K. dan Mebrouki, A., (2013). “Shrinkage

Behavior of a Self Compacting Concrete”. Materials and Technology,

47(6), pp. 763-769.

Brouwers, H. dan Radix, H. (2005). “Self-Compacting Concrete: Theoretical and

experimental study”. ELSEVIER, Volume 35, pp. 2116-2136.

Cheng, M.-Y., Prayogo, D. dan Wu, Y.-W., (2014). “Novel Genetic

Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete Mixture”. ASCE, pp. 1-7.

Chen, L. dan Wang, T.-S., (2010). “Modeling Strength of High Performance

Concrete Using an Improved Grammatical Evolution Combined with Macrogenetic Algorithm”. Journal of Computing in Civil Engineering,

24(3), pp. 281-288.

Dhiyaneshwaran, S., Ramanathan, P., Baskar, I. dan Venkatasubramani, R., (2013).

“Study on Durability Characteristics of Self-Compacting Concrete with Fly

Ash”. Jordan Journal of Civil Engineering, 7(3), pp. 342-353.

EFNARC, (2005). “The European Guidelines for Self Compacting Concrete”.

Farnham: EFNARC.

Ekaputri, J. J., Limantono, H., and Triwulan (2015).”Effect of PVA Fiber in Increasing Mechanical Strength on Paste Containing Glass Powder”. Key

Engineering Materials, Volume 673, pp. 83-93.

Ekaputri, J. J. dan Maekawa, K., (2010). “Thermo-Hygro Stability of Solidified

Pozzolans in Aqueous Medium”, Tokyo: The University of Tokyo.

Ferraris, C. F., Brower, L., Ozyildirim, C. dan Daczko, J., (2000). “Workability of

Self-Compacting Concrete”. NIST.

Gencel, O., Ozel, C., Brostow, W. dan Martinez-Barrera, G., (2011). “Mechanical

Properties of Self-Compacting Concrete reinforced with polypropylene fibres”. Materials Research Innovations, 15(3), pp. 216-225.

Grdí, Z., Despotoví, I. dan Toplǐí ́uří, G., (2008).” Properties of

Self-Compacting Concrete with different types of Additives”. Architecture and

101

Holt, E. E., (2001). “Early age autogeneous shrinkage of concrete”. Finland:

Technical Research Centre of Finland.

Kadri, E.-H., Duval, R., Aggoun, S. dan Kenai, S., (2009). “Silica Fume Effect on

Hydration Heat and Compressive Strength of High Performance Concrete”.

ACI Materials Journal, 106(2), pp. 107-113.

Khatib, J. M., Negim, E. M., Sohl, H. S. dan Chileshe, N., (2012). “Glass Powder

Utilisation in Concrete Production”. European Journal of Applied Science,

4(4), pp. 173-176.

Khotimah, C. & Mashuri M. (2015). Penerapan Metode Optimasi Multirespon Menggunakan Hybrid PCA-Taguchi dan PCR-TOPSIS Taguchi pada Penggurdian Material Komposit. Jurnal Sains dan Seni ITS. 4(1).

Limantono, H., Triwulan dan Ekaputri, J. J., (2015).” Pengaruh Serbuk Kaca dan

Silica Fume Terhadap High Strength Concrete”. Jurnal Teknik ITS, 4(1),

pp. 1-6.

Liu, M. (2010). “Incorporating ground glass in self-compacting concrete”.

ELSEVIER, Volume 25 (2011), pp. 919-925.

Logan, A., Choi, W., Mirmiran, A., Rizkalla, S., dan Zia, P., (2009). “Short-Therm

Mechanical Properties of High-Strength Concrete”. Aci Materials Journal,

106(5), pp. 413-418.

Meeks, K. W. dan Carino, N. J., (1999). “Curing of High Performance Concrete :

Report of the State of the Art”. Gaithersburg(Maryland): United States

Department of Commerce Technology Administration.

Nugraha, P. dan Antoni, (2004). “Teknologi Beton”. Yogyakarta: CV Andi Offset.

Okamura, H. dan Ouchi, M., (2003). “Self-Compacting Concrete”. Journal of

Advanced Concrete Technology, I(1), pp. 5-15.

Okrajnov-Bají, R. dan Vasoví, D., (2009). “Self-Compacting Concrete and its

Aplication in Contemporary Architectural Practise”. SPATIUM, Volume

20, pp. 28-34.

Ozawa, K., Maekawa, K. dan Okamura, H., (1991).” Development of High

Performance Concrete”. Journal of the Faculty of Engineering, 30

102

Patel, V. dan Shah, N., (2013). “A Survey of High Performance Concrete

Developments in Civil Engineering Field”. Open Journal of Civil

Engineering , Volume 3, pp. 69-79.

Rashid, M. dan Mansur, M., (2009). “Consideration in producing high strength

concrete”. Journal of Civil Engineering, 15 June.pp. 53-63.

Roy, R.K. (2001). Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process. New York: John Wiley & Sons.

Roy, R.K. (2010). A Primer on the Taguchi Method. (2nd ed.). U.S.A: Society of Manufacturing Engineers.

Russel, H. G., Moreno, J., Saucier, K. L. dan Perenchio, W. F., (1997).

“State-of-the-Art Report on High-Strength Concrete”, s.l.: ACI Committee 363.

Shayan, A. dan Xu, A., (2005). “Performance of Glass Powder as a Pozzonalic

material in concrete : A field trial on concrete slabs”. ELSEVIER, Volume

36, pp. 457 - 468.

Soejanto, I., (2009). “Desain Eksperimen dengan Metode Taguchi”. Pertama ed.

Yogyakarta: Graha Ilmu.

Sugiharto, H., Kusuma, G. H., Himawan, A. dan Darma, D. S., (2001).

“Penggunaan Fly Ash dan Viscocrete pada Self Compacting Concrete”.

Dimensi Teknik Sipil, 3(1), pp. 30-35.

Wille, K., Naaman, A. E. dan Parra-Montersinos, G. J., (2011). “Ultra-High

Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi) : A Simpler Way”. ACI Materials Journal, 108(1), pp. 46-54.

Dokumen terkait