• Tidak ada hasil yang ditemukan

KESIMPULAN DAN SARAN

Dalam dokumen TESIS SURYONO S951208004 (Halaman 52-56)

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Berdasarkan penelitian yang telah dilakukan dapat diambil kesimpulan sebagai berikut:

1. Metode fabrikasi partikel LiFePO4/C dengan metode flame assisted spray

pyrolisis dan metode solid state reaction telah berhasil dilakukan.

2. Uji SEM menunjukkan bahwa partikel yang dihasilkan masih berukuran mikron. Diameter rata-rata ukuran partikel LiFePO4/C berkisar antara 167

nm-390 nm.

3. Kapasitas baterai menunjukkan peningkatan rasio P akan menurunkan kapasitas baterai. Rata-rata kapasitas optimal terjadi pada rasio Fe:P 1:1,2 sebesar 83,067 mAh/g. Efisiensi tertinggi juga terjadi pada rasio Fe:P 1:1,2 sebesar 97,20%.

4. Baterai dengan komposisi rasio Fe dan P sebesar 1:1,2 cenderung memiliki kapasitas, efisiensi dan stabilitas yang lebih baik.

5.2. Saran

Berdasarkan penelitian yang telah dilakukan penulis menyarankan:

1. Dalam memproduksi nanopartikel dengan metode flame assisted spray pyrolysis hendaknya memperhatikan parameter pada alat tersebut, diantaranya temperatur api, konsentrasi larutan precursor, lama waktu kontak dengan api, dan laju precursor.

2. Penelitian lebih lanjut fabrikasi LiFePO4/C dengan bahan iron (III)

acetylacetonate dan tri-butylphosphate.

Choi, D.W., and Kumta, P.N., 2007, Surfactant based solgel approach to nanostructured LiFePO4 for high rate Li-ion batteries, J. Power Sources, 163, pp. 1064.

Ding, K., Gu, H., Zheng, C., Liu, L., Liu, L., Yan, X., and Guo, Z. (2014). Octagonal prism shaped lithium iron phosphate composite particles as positive electrode materials for rechargeable lithium-ion battery. Electrochimica Acta,146, pp. 585- 590.

Ding, K., Li, W., Wang, Q., Wei, S., and Guo, Z. 2012. Modified solid-state reaction synthesized cathode lithium iron phosphate (LiFePO4) from different phosphate sources. Journal of Nanoscience and Nanotechnology,12(5), pp. 3812-3820. Dominko, R., Goupil, JM., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D.,

and Jamnik., 2005, Impact of LiFePO4 ∕ C composites porosity on their electrochemical performance, J. Electrochem. Soc, 152, pp. A858. Gaberscek, M., Dominko, R., Bele, M., Remskar, M., Hanzel, D., and Jamnik, J.,

2005, Mass and charge transport in hierarchically organized storage materials. Example: Porous active materials with nanocoated walls of pores, Solid State Ion, 176, pp. 1801.

Gabrisch, H., Wilcox, J.D., Doeff, M.M., Carbon Surface Layers on a High-Rate LiFePO4 Electrochem. Solid-State Lett, 2006, 11, A25.

Guo, G., Long, B., Cheng, B., Zhou, S., Xu, P., & Cao, B. 2010. Three- dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. Journal of Power Sources, 195(8), pp. 2393- 2398.

Halim Abdul, Heru Setyawan, Siti Machmudah, Tantular Nurtono, and Sugeng Winardi., 2014, Effect of fuel rate and annealing process of LiFePO 4 cathode material for Li-ion batteries synthesized by flame spray pyrolysis method, 5th Nanoscience and Nanotechnology Symposium (NNS2013),

AIP Conference Proceedings 1586, pp. 173-178.

process of lifepo4 cathode material for li-ion batteries synthesized by flame spray pyrolysis method, Nanoscience and Nanotechnology Symposium, pp. 173-178.

Hamid, N. A., Wennig, S., Hardt, S., Heinzel, A., Schulz, C., and Wiggers, H. 2012. High-capacity cathodes for lithium-ion batteries from nanostructured LiFePO 4 synthesized by highly-flexible and scalable flame spray pyrolysis. Journal of Power Sources, 216, pp. 76-83.

Heine, M.C., and Pratsinis, S.E., 2005, Droplet and particle dynamics during

flame spray synthesis of nanoparticles, Industrial & Engineering

Chemistry Research, 44, pp. 6222–6232.

Hong, S. A., Kim, S. J., Chung, K. Y., Lee, Y. W., Kim, J., and Sang, B. I. 2013.

Continuous synthesis of lithium iron phosphate nanoparticles in supercritical water: Effect of process pa rameters. Chemical Engineering Journal, 229, pp. 313-323.

Ju, S. H., and Kang, Y. C. 2008. LiFePO 4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution conta ining nano-sized carbon black. Materials Chemistry and Physics, 107(2), pp. 328-333.

Kucinskis, G., Bajars, G., and Kleperis, J. 2013. Graphene in lithium ion battery cathode materials: A review. Journal of Power Sources, 240, pp. 66-79. Li, Z., Zhang, D., and Yang, F. 2009. Developments of lithium-ion batteries and

challenges of LiFePO4 as one promising cathode material. Journal of materials science, 44(10), pp. 2435-2443.

Nuryadin, B. W. 2008, Rancang Bangun Reaktor Spray Drying Dan Spray Pyrolysis Mengunakan Ultrasonic Nebulizer Dan Pemanas Bertingkat,

Program Studi Fisika, Institut Teknologi Bandung, Indonesia.

Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J. B., 1997, Phospho- olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, Journal of Electrochemical Society, No.144, pp. 1188-1194. Phanichphant, S., Liewhiran, C., Wetchakun, K., Wisitsoraat, A., and

Tuantranont, A. 2011. Flame-made Nb-doped TiO2 ethanol and acetone sensors. Sensors, 11(1), pp. 472-484. commit to user

impurity phases in relation to the mode of preparation of LiFePO4. Materials Science and Engineering: B, 129(1), pp. 232-244.

Salminen. J., Steingart, D., and Kallio, T., 2008, Fuel cells and batteries, in: T. Letcher et al. (Eds.), Future Energy Improved Sustainable and Clean Options for Our Planet, Elsevier-IUPAC, pp. 259–276.

Scrosati, B., and Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), pp. 2419-2430.

Suhendra, B. 2011. Studi performa dan manufaktur dye-sensitized solar sel (dssc) berbasis zno nanopartikel dengan proses flame assisted spray pyrolysi,

tesis, UNS, Surakarta.

Tani, T., Mädler, L., & Pratsinis, S. E. 2002, Synthesis of zinc oxide/silica composite nanoparticles by flame spray pyrolysis, Journal Of Material Science 37, 4627-4632.

Tarascon J.M., 2006, Progress in Lithium Batteries, Global Climate and Energy Project's Advanced Transportation Workshop, Stanford University, USA. Toprakci, O., Toprakci, H. A., Ji, L., and Zhang, X. 2010. Fabrication and

electrochemical characteristics of LiFePO 4 powders for lithium-ion batteries. KONA Powder and Particle Journal, 28(0), pp. 50-73.

Väyrynen, A., and Salminen, J. 2011. Modular li-ion battery systems for electric and hybrid powertrains. In ICPC 2011, 6th AVL International Commercial Powertrain Conference, Graz, Austria.

Väyrynen, A., and Salminen, J. 2012. Lithium ion battery production, The Journal of Chemical Thermodynamics, 46, pp. 80-85.

Wang, G. X., Bewlay, S., Needham, S. A., Liu, H. K., Liu, R. S., Drozd, V. A., Lee, J.-F. and Chen, J. M., 2006, Synthesis and Characterization of LiFePO4 and LiTi0.01Fe0.99PO4 Cathode Materials, Journal of The Electrochemical Society, No.153(1), pp. A25-A31.

Wang, G. X., Yang, L., Chen, Y., Wang, J. Z., Bewlay, S., and Liu, H. K. 2005,

An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochimica Acta, 50(24), pp. 4649-4654.

Li-ion batteries, Journal of Aerosol Science 42(10), pp. 657-667

Xu, C., Lee, J., and Teja, A. S. 2008. Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water. The Journal of Supercritical Fluids, 44(1), pp. 92-97.

Yoshio, M., Ralph J. B., and Akiya, K. 2009. Lithium-Ion Batteries Science and Technologies. Springer Science Business Media, New York.

Zhang, W. J., 2011. Structure and performance of LiFePO 4 cathode materials: a review. Journal of Power Sources, 196(6), pp. 2962-2970.

Zhang, Y., Huo, Q. Y., Du, P. P., Wang, L. Z., Zhang, A. Q., Song, Y. H., and Li, G. Y. (2012). Advances in new cathode material LiFePO 4 for lithium- ion batteries. Synthetic Metals, 162(13), pp. 1315-1326.

Dalam dokumen TESIS SURYONO S951208004 (Halaman 52-56)

Dokumen terkait