• Tidak ada hasil yang ditemukan

Bab ini berisi tentang kesimpulan dari hasil analisa dan saran untuk penyempurnaan hasil penelitian untuk penelitian berikutnya.

BAB II

TINJAUAN PUSTAKA

2.1 Potensi Energi Air

Air merupakan sumber energi yang murah dan relatif mudah didapat, karena pada air tersimpan energi potensial (pada air jatuh) dan energi kinetik (pada air mengalir). Tenaga air (hydropower) adalah energi yang diperoleh dari air yang mengalir. Energi yang dimiliki air dapat dimanfaatkan dan digunakan dalam wujud energi mekanis maupun energi listri. Pemanfaatan energi air banyak dilakukan dengan kincir air atau turbin air yang memanfaatkan adanya suatu air terjun ataupun aliran air disungai. Turbin air dikembangkan pada abad 19 dan digunakan secara luas untuk pembangkit tenaga listrik. Berdasarkan prinsip kerja turbin dalam mengubah energi potensial air menjadi energi kinetik.

Besarnya tenaga air yang tersedia dari suatu sumber air bergantung pada besarnya head dan debit air. Banyaknya sungai dan danau air tawar yang ada di Indonesia merupakan modal awal untuk pengembangan energi air ini. Namun eksploitasi terhadap sumber energi yang satu ini juga harus memperhatikan ekosistem lingkungan yang sudah ada. Pemanfaatan energi air pada dasarnya adalah pemanfaatan energi potensial gravitasi. Energi mekanik aliran air yang merupakan transformasi dari energi potensial gravitasi dimanfaatkan untuk menggerakkan turbin atau kincir. Umumnya turbin digunakan untuk membangkitkan energi listrik sedangkan kincir untuk pemanfaatan energi mekanik secara langsung. Untuk aliran yang melewati turbin, maka besar daya yang dihasilkan dapat dihitung dengan persamaan :

P = ρ.g.Q.Heff.ŋt dimana : P = daya air (watt)

ρ = massa jenis air (kg/m3

) Q = debit aliran (m3/det2) g = gravitasi bumi (m/det2) Heff = head efektif (m)

2.2 Mesin – Mesin Fliuda

Mesin-mesin fluida adalah mesin-mesin yang berfungsi untuk mengubah energi mekanis menjadi energi fluida ( energi potensial dan energi mekanis ) atau sebaliknya yaitu merubah energi fluida menjadi energi mekanis sesuai dengan pengertian diatas, maka klasifikasi mesin-mesin fluida secara umum adalah :

1. Mesin-mesin tenaga

Mesin-mesin tenaga merupakan mesin fluida yang dapat merubah energi fluida menjadi energi mekanis. Yang termasuk dalam kelompok ini adalah turbin air dan kincir air

2. Mesin-mesin kerja

Mesin-mesin kerja merupakan mesin fluida yang dapat merubah energi mekanis menjadi energi fluida. Yang termasuk dalam kelompok ini adalah pompa, blower, kolpresor, dan fan.

Sesuai dengan spesifikasi tugas yang diberikan maka dalam tulisan ini akan dibahas mengenai turbin air secara khusus.

2.3 Pengertian Tubin Air

Turbin air yaitu suatu mesin yang dipergunakan untuk mengamil tenaga air untuk diubah menjadi tenaga listrik, jadi berfungsi untuk mengubah tenaga air menjadi tenaga mekanis, sedangkan tenaga mekanis ini diubah menjadi tenaga listrik oleh generator.

Turbin adalah mesin penggerak dimana energi fluida kerja dipergunakan langsung untuk memutar sudu turbin. Bagian turbin yng bergerak dinamakan rotor atau sudu turbin, sedangkan bagian yang tidak berputar dinamakan stator atau rumah turbin. Secara umum, turbin adalah alat mekanika yang terdiri dari poros dan sudu-sudu. Sudu tetap ataupun stationary blade, tidak ikut berputar bersama poros, dan berfungsi mengarahkan aliran fluida. Sedangkan sudu putar atau rotary blade, mengubah arah dan kecepatan aliran fluida sehingga timbul gaya

yang memutar poros. Air biasnya dianggap sebagai fluida yang tak kompresibel, yaitu fluida yang secara virtual massa jenisnya tidak berubah dengan tekanan.

Ada beberapa kesamaan teori dari turbin air dan pompa air, dengan perbedaan utama energi transfer yang berkebalikan. Turbin air mengubah energi potensial dari air menjadi energi mekanis putaran poros. Sedangkan pompa air mengubah energi mekanis putaran poros menjadi gerak aliran air.

Turbin konvensional, dalam kelompok mesin penggerak mula atau prime movers ada tiga macam yaitu :

1. Turbin air dengan media kerja air.

2. Turbin gas dengan media kerja gas panas yang bertekanan. 3. Turbin uap dengan media kerja uap.

Ketiga macam turbin tersebut mempunyai kemiripan dalam konstruksi, namun beda dalam termodinamikanya, karena fluida kerjanya yang tidak sama.

Teori turbin air bertujuan terutama untuk mendapatkan kerja optimum dalam pemanfaatan energi air pada suatu kondisi oprasi tertentu. Dasar kerja turbin air sangat sederhana ini sudah ditemukan sebelum dimulainya tahun masehi. Teknologi turbin air merupakan perkembangan dari kincir air (water wheel). Perbedaan utama antara kinci air dan turbin air adalah bahwa kincir air hanya mengubah kecepatan aliran, sedangkan turbin air mengubah arah dan kecepatan aliran.

Pada saat sekarang, penggunaan turbin air lebih banyak digunakan dibandingkan kincir air. Hal ini disebabkan karena turbin air mempunyai keuntungan-keuntungan antara lain :

1. Ruang yang diperlukan lebih kecil.

2. Dapat beroperasi dengan kecepatan yang lebih tinggi.

3. Mampu membangkitkan daya yang lebih besar dengan ukuran yang relatif kecil.

4. Daerah putaran (rpm) yang lebih luas, sehinga memungkinkan hubungan langsung dengan generator.

5. Mampu memanfaatkan beda ketinggian permukaan air dari yang sangat rendah sampai yang ekstrim tinggi.

6. Dapat bekerja terendam didalam air.

7. Mempunyai efisiensi yang relatif lebih baik.

8. Dapat dikontruksikan dengan poros mendatar maupun tegak.

2.4 Komponen-komponen Turbin

1. Stator

Stator turbin terdiri dari dua bagian, yaitu casing dan sudu diam (fixed blade). Namun untuk tempat kedudukan sudu-sudu diam yang pendek dipasang diapragma.

a. Casing

Casing atau shell adalah suatu wadah berbentuk menyerupai sebuah tabung dimana rotor ditempatkan. Pada ujung casing terdapat ruang besar mengelilingi poros turbin disebut exhaust hood, dan diluarcasing dipasang bantalan yang berfungsi untuk menyangga rotor.

b. Sudu Tetap

Sudu merupakan bagian dari turbin dimana konversi energi terjadi. Sudu terdiri dari bagian akar sudu, badan sudu dan ujung sudu. Sudu kemudian dirangkai sehingga membentuk satu lingkaran penuh.

Sudu-sudu tetap dipasang melingkar pada dudukan berbentuk piringan yang disebut diapragma. Pemasangan sudu-sudu tetap ini pada diapragma menggunakan akar berbentuk T sehingga memberi posisi yang kokoh pada sudu.

Diapragma terdiri dari dua bagian (atas dan bawah) dan dipasang pada alur-alur yang ada didalam casing. Setiap baris dari rangkaian sudu-sudu tetap ini membentuk suatu lingkaran penuh dan ditempatkan langsung didepan setiap baris dari sudu-sudu gerak

2. Rotor

Rotor adalah bagian yang berutar terdiri dari poros dan sudu-sudu gerak yang terpasang mengelilingi rotor. Jumlah baris sudu gerak pada rotor sama dengan jumlah baris sudu diam pada casing. Pasangan antara sudu diam dan sudu gerak disebut tingkat (stage).

a. Poros

Poros dapat berupa silinder panjang yang solid (pejal) atau berongga (hollow). Pada umumnya poros turbin sekarang terdiri dari silinder panjang yang solid. Sepanjang poros dibuat alur-alur melingkar yang biasa disebut akar (root) untuk tempat dudukan, sudu-sudu gerak (moving blade).

b. Sudu Gerak

Sudu gerak adakah sudu-sudu yang dipasang di sekeliling rotor membentuk suatu piringan. Dalam suatu rotor turbin terdiri dari beberapa baris piringan dengan diameter yang berbeda-beda, banyaknya baris sudu gerak biasanya disebut banyaknya tingkat.

c. Bantalan

Bantalan berfungsi sebagai penyangga rotor sehingga membuat rotor dapat stabil/lurus pada posisinya didalam casing dan rotor dapat berputar dengan aman dan bebas. Adanya bantalan yang menyangga turbin selain bermanfaat untuk menjaga rotor turbin tetap pada posisinya juga menimbulkan kerugian mekanik karena gesekan. Sebagai bagian yang berputar, rotor memiliki kecenderungan untuk bergerak baik dalam arah radial maupun dalam arah aksial. Karena itu rotor harus ditumpu secara baik agar tidak terjadi pergeseran radial maupun aksial yang berlebihan. Komponen yang dipakai untuk keperluan ini disebut bantalan (bearing).

2.5 Jenis – Jenis Turbin

Berdasarkan prinsip kerja turbin dalam mengubah energi potensial air menjadi energi mekanis, turbin dibedakan menjadi dua kelompok yaitu turbin

Impuls dan turbin Reaksi. Turbin air dibedakan menjadi dua kelompok yaitu turbin impuls dan turbin reaksi.

Sebelum berkembang menjadi turbin Pelton dan turbin Crossflow (jenis impuls), dan turbin Francis dan turbin Kaplan (jenis reaksi) seperti yang banyak ditemukan saat sekarang, beberapa jenis turbin dengan kontruksi yang relative sederhana telah mengawalinya. Di samping itu juga telah dilakukan upaya penyempurnaan dengan memodifikasi rancangan dari turbin-turbin yang sudah mapan seperti turbin Pelton, turbin Crossflow, turbin Francis, dan turbin Kaplan. Beberapa jenis turbin air dapat disebut seperti turbin Banki, turbin Fourneyron, turbin Girard, turbin Turgo, turbin Jonval, turbin Thomson, turbin Deriaz, turbin Heber, turbin Schwan-Krug. Turbin-turbin tersebut dinamakan sesuai dengan nama penemunya. Walaupun dari segi kepentingan tidak begitu besar artinya, namun dari kepentingan akademik, beberapa jenis turbin air ini perlu juga dikenal.

2.5.1 Turbin Impuls

Pada turbin impuls energi potensial air diubah menjadi energi kinetik pada nosel. Air keluar nosel yang mempunyai kecepatan tinggi membentur sudu tubir. Setelah membentur sudu turbin arah kecepatan aliran berubah sehingga terjadi perubahan momentum (impuls). Akibatnya roda turbin akan berputar. Turbin impuls adalah turbin tekanan sama karena aliran air yang keluar dari nosel tekananya adalah sama dengan tekanan atmosfil sekitarnya. Beberapa contoh dari turbin impuls tubin pelton dan turbin crossflow.

1. Turbin Pelton.

Turbin pelton merupakan turbin impuls. Turbin Pelton terdiri dari satu set sudu jalan yang diputar oleh pancaran air yang disemprotkan dari satu atau lebih alat yang disebut nosel. Turbin Pelton adalah salah satu dari jenis turbin air yang paling efisien. Turbin Pelton adalah turbin yang cocok digunakan untuk head tinggi.

Gambar 2.1 Sudu Tubin Pelton

Sumber :

Bentuk sudu turbin terdiri dari dua bagian yang simetris. Sudu dibentuk sedemikian sehingga pancaran air akan mengenai tengah-tengah sudu dan pancaran air tersebut akan berbelok ke kedua arah sehinga bisa membalikkan pancaran air dengan baik dan membebaskan sudu dari gaya-gaya samping. Untuk turbin dengan daya yang besar, sistem penyemprotan airnya dibagi lewat beberapa nosel. Dengan demikian diameter pancaran air bisa diperkecil dan ember sudu lebih kecil. Turbin Pelton untuk pembangkit skala besar membutuhkan head lebih kurang 150 meter tetapi untuk skala mikro head 20 meter sudah mencukupi.

Gambar 2.2 Turbin Pelton

2. Turbin Crossflow (Turbin Michell-Banki).

Pada turbin impuls pelton beroperasi pada head relatif tinggi, sehingga pada head yang rendah operasinya kurang efektif atau efisiensinya rendah. Karena alasan tersebut, turbin pelton jarang dipakai secara luas untuk pembangkit listrik skala kecil. Sebagai alternatif turbin jenis impuls yang dapat beroperasi pada head rendah adalah turbin crossflow atau turbin impuls aliran ossberger. Turbin crossflow dapat dioperasikan pada debit 20 litres/sec hingga 10 m3/sec dan head antara 1 s/d 200 m. Komponen – komponen utama konstruksi turbin crossflow adalah sebagai berikut :

1. Rumah Turbin.

2. Alat Pengarah (distributor).

3. Roda Jalan.

4. Penutup.

5. Katup Udara.

6. Pipa Hisap.

7. Bagian Peralihan.

Aliran air dilewatkan melalui sudu-sudu jalan yang berbentuk silinder, kemudian aliran air dari dalam silinder ke luar melalui sudu-sudu. Jadi perubahan energi aliran air menjadi energi mekanik putar terjadi dua kali yaitu pada waktu air masuk silinder dan air keluar silinder. Energi yang diperoleh dari tahap kedua adalah 20% nya dari tahap pertama.

Gambar 2.3 Turbin Crossflow

Sumber

Air yang masuk sudu diarahkan oleh alat pengarah yang sekaligus berfungsi sebagai nosel seperti pada turbin pelton. Prinsip perubahan energi adalah sama dengan turbin impuls pelton yaitu energi kinetik dari pengarah dikenakan pada sudu-sudu pada tekanan yang sama. Turbin crossflow menggunakan nozle persegi panjang yang lebarnya sesuai dengan lebar runner. Pancaran air masuk turbin dan mengenai sudu sehingga terjadi konversi energi kinetik menjadi energi mekanis. Air mengalir keluar membentur sudu dan memberikan energinya (lebih rendah dibanding saat masuk) kemudian meninggalkan turbin. Runner turbin dibuat dari beberapa sudu yang dipasang pada sepasang piringan paralel.

Ciri utama tubin impuls adalah tekanan jatuh hanya terjadi pada sudu tetap, dan tidak terjadi pada sudu berputar. Turbin impuls disebut turbin tak bertekanan karena sudu gerak beroperasi pada tekanan atmosfer. Banyak turbin air jenis impuls yang pernah dibuat, namun yang masih banyak ditemukan pada saat sekarang adalah turbin pelton dengan bentuk bucket yang terbelah ditengah. Posisi poros dapat dibuat tegak (vertika) atau mendatar (horizontal).

2.5.2 Turbin Reaksi

Pada turbin reaksi, energi yang tersedia pada saluran masuk hanya sebagaian saja yang dirubah menjadi energi kinetik sedangkan sisanya tetap dalam bentuk energi tekan. Ketika air mengalir melalui rod gerak/runner terjadi perubahan energi tekan menjadi energi kinetik secara berangsur-angsur. Tekanan

pada sisi masuk roda gerak lebih tinggi dibandingkan tekanan pada sisi keluar roda gerak turbin, dimana tekanan tersebut bervariasi terhadap laju aliran fluida yang melalui turbin. Selanjutnya agar perubahan tekanan ini dapat terjadi, maka roda/runner dalam hal ini harus tertutup dari udara luar dan seluruhnya terisi air selama turbin beroperasi. Beberapa contoh dari turbin reaksi adalah turbin fancis, turbin kapla, dan turbin vortex

1. Turbin Kaplan.

Tidak berbeda dengan turbin francis, turbin kaplan cara kerjanya menggunakan prinsip reaksi. Turbin ini mempunyai roda jalan yang mirip dengan baling-baling pesawat terbang. Bila baling-baling pesawat terbang berfungsi untuk menghasilkan gaya dorong, roda jalan pada kaplan berfungsi untuk mendapatkan gaya F yaitu gaya putar yang dapat menghasilkan torsi pada poros turbin. Berbeda dengan roda jalan pada francis, sudu-sudu pada roda jalan kaplan dapat diputar posisinya untuk menyesuaikan kondisi beban turbin. Turbin kaplan banyak dipakai pada instalasi pembangkit listrik tenaga air sungai, karena turbin ini mempunyai kelebihan dapat menyesuaikan head yang berubah-ubah sepanjang tahun. Turbin Kaplan dapat beroperasi pada kecepatan tinggi sehingga ukuran roda turbin lebih kecil dan dapat dikopel langsung dengan generator. Pada kondisi pada beban tidak penuh turbin kaplan mempunyai efisiensi paling tinggi, hal ini dikarenakan sudu-sudu turbin kaplan dapat diatur menyesuaikan dengan beban yang ada.

Gambar 2.4 Turbin Kaplan dengan sudu jalan yang dapat diatur.

2. Turbin Francis

Turbin francis merupakan salah satu turbin reaksi. Turbin dipasang diantara sumber air tekanan tinggi di bagian masuk dan air bertekanan rendah di bagian keluar. Turbin Francis menggunakan sudu pengarah. Sudu pengarah mengarahkan air masuk secara tangensial. Sudu pengarah pada turbin francis dapat merupakan suatu sudu pengarah yang tetap ataupun sudu pengarah yang dapat diatur sudutnya. Untuk penggunaan pada berbagai kondisi aliran air penggunaan sudu pengarah yang dapat diatur merupakan pilihan yang tepat

Gambar 2.5 Turbin Francis

Sumber.

3. Turbin Vortex (Pusaran Air)

Turbin vortex merupakan turbin yang memanfaatkan pusaran air sebagai media perantara energi terhadap sumbu vertikal sehingga terjadi perbedaan tekanan antara bagian sumbu dan sekelilingnya. Turbin air ini dioperasikan pada daerah yang memiliki head yang rendah dan memanfaatkan pusaran gravitasi air sehingga akan menimbulkan perbedaan tekanan air dengan bagian sumbu. Hal ini ditemukan oleh insinyur Austria Franz Zotloterer ketikan mencoba untuk menemukan cara untuk menganginkan air tanpa sumber daya eksternal.

Gambar 2.6 Turbin Vortex

Sumber :

Ciri utama turbin reaksi pada semua jenis turbin , baik turbin uap, turbin gas dan turbin air, adalah sebagian dari tekanan jatuh terjadi pada sudu tetap dan sebagian lagi pada sudu berputar. Persamaan kontinuitas dapat digunakan pada perhitungan aliran melalui sudu berputar, karena seluruh fluida kerja memenuhi seluruh saluran sudu. Karena fluda masuk sudu berputar melalui seluruh tepi seksi masuk, maka untuk daya dan putran yang sama, diameter nominalnya relatif lebih kecil dibandingkan turbin impuls.

KonzKl.EmmeRossei_110131[1].doc / WWK Energie GmbH

2.6 Klasifikasi Turbin

Pemilihan turbin kebanyakan didasarkan pada head air yang yang didapatkan dan pada rata-rata alirannya. Umumnya, turbin impuls digunakan untuk tempat dengan head tinggi, dan turbin reaksi digunakan untuk tempat dengan head rendah.

2.6.1 Klasifikasi Berdasarkan Ketinggian Jatuh Air

Pemakaian jenis turbin dibedakan atas ketinggian air jatuh, dimana untuk ketinggian air jatuh tertentu maka berbeda pula jenis turbin yang digunakan. Pada tabel berikut dapat dilihat jenis turbin yang digunakan menurut tinggi air jatuh.

Tabel 2.1 Klasifikasi Turbin air berdasarkan tinggi jatuh air

Ketinggian Air Jatuh (m) Jenis Turbin

Tinggi tekan sangat rendah (<2m)

Turbin Vortex

Tinggi tekan rendah (<15) Turbin

Baling-baling/Kaplan Tinggi tekan menengah

(16-70)

Turbin Kaplan/Francis

Tinggi tekan tinggi (71-500)

Turbin Francis/Pelton

Tinggi tekan sangat tinggi (>500)

Turbin Pelton

Sumber : M. M. Dhandekar, K. N Sharma, “Pembangkit Listrik Tenaga Air” hal. 394

2.6.2 Klasifikasi Berdasarkan Kecepatan Spesifik Turbin

Kecepatan spesifik (ns), menunjukkan bentuk dari turbin itu dan tidak berhubungan dengan ukurannya. Hal ini menyebabkan desain turbin baru yang diubah skalanya dari desain yang sudah ada, dengan performa yang sudah diketahui. Kecepatan spesifik merupakan kriteria utama yang menunjukkan pemilihan jenis turbin yang tepat berdasarkan karakteristik sumber air.

Kecepatan spesifik dari sebuah turbin juga dapat diartikan sebagai kecepatan ideal, persamaan geometris turbin, yang menghasilkan satu satuan daya tiap satu satuan head. Kecepatan spesifik turbin dapat diartikan sebagai titik efisiensi maksimum. Perhitungan tepat ini menghasilkan performa turbin dalam jangkauan head dan debit tertentu.

Kecepatan spesifik juga merupakan titik awal dari analisis desain dari sebuah turbin baru. Setelah kecepatan spesifik yang diinginkan diketahui, dimensi dasar dari bagian - bagian turbin dapat dihitung dengan mudah.

Keluaran turbin dapat diperkirakan berdasarkan dari test permodelan. Replika miniatur dari desain yang diusulkan, diameter sekitar satu kaki (0,3 m), dapat diuji dan hasil pengukuran laboratorium dapat digunakan sebagai kesimpulan dengan tingkat keakuratan yang tinggi.

Debit yang melalui turbin dikendalikan dengan katub yang besar atau pintu gerbang yang disusun diluar sekeliling pengarah turbin. Perubahan head dan debit dapat dilakukan dengan variasi bukaan pintu, akan menujukkan efisiensi turbin dengan kondisi yang berubah-ubah.

Kecepatan spesifik dapat dihitung dengan menggunakan rumus :

ns =

n√Pt H5/4

Dimana : n = Putaran turbin (rpm) ns = Putaran spesifik (rpm) H = Tinggi effektif (m) Pt = Daya turbin

Tabel 2.2 Klasifikasi berdasarkan putaran spesifik

PENGGERAK

KECEPATAN SPESIFIK (RPM)

Lambat Sedang Cepat

Pelton 4 – 5 16 – 30 31 – 70 Francis 60 – 150 151 - 250 251 – 400 Kaplan 300 – 450 451 – 700 701 – 1100

2.6.3 Klasifikasi Berdasarkan Arah Aliran Fluida

Pada tabel berikut dapat dilihat pemakaian jenis turbin berdasarkan arah alirannya.

Tabel 2.3 Jenis-jenis turbin berdasarkan arah alirannya

Jenis Turbin Arah Aliran

Francis Radikal atau gabungan

Pelton Tangensial

Kaplan Aksial

Vortex Vertikal

2.7 Turbin Vortex ( Pusaran Air)

Turbin vortex adalah turbin yang mengubah energi kinetik dari vortex (pusaran) menjadi torsi. Vortex atau pusaran sendiri didefenisikan sebagai aliran fluida yang bergerak disepanjang lintasan melengkung atau aliran massa fluida yang bergerak melingkar.

Turbin vortex merupakan turbin yang memanfaatkan pusaran air sebagai media perantara energi terhadap sumbu vertikal sehingga terjadi perbedaan tekanan antara bagian sumbu dan sekelilingnya. Turbin air ini dioperasikan pada daerah yang memiliki head yang rendah dan memanfaatkan pusaran gravitasi air sehingga akan menimbulkan perbedaan tekanan air dengan bagian sumbu. Hal ini ditemukan oleh insinyur Austria Franz Zotloterer ketikan mencoba untuk menemukan cara untuk menganginkan air tanpa sumber daya eksternal.

Tanaman pusaran air gravitasi yang dibangun langsung diatas sungai. Tingkat tinggi air minimal 0.7 m dan maksimum 2 m. Turbin pusaran air gravitasi “teknologi bersih” spesifikasi karena fakta bahwa 97 % dari produksi listrik bebad CO2. Turbin air jenis vortex ini baik bagi lingkungan karena tidak menimbulkan ancaman bagi kehidupan air seperti ikan dan udang, karena merekan dapat melewati hilir rotor dan hulu. Efesiensi pembersihan peningkatan

mikro-organisme alami berkat kadar oksigen yang lebih tinggi dihasilkan dari aerasi rutin air

Pada tahun 2003, gravitasi air pembangkit listrik pusaran oleh Austria Insinyur DI Franz Zotlöterer dikembangkan. Paten pertama dikeluarkan pada tahun 2004 pendirian perusahaan Zotlöterer untuk perencanaan dan konstruksi pembangkit listrik pusaran air gravitasi. 2005, sebuah pabrik percontohan pertama 7.5 kW tenaga listrik dan Pembangkit listrik tahunan sekitar 43.000 kWh di Obergrafendorf di Lower Austria didirikan. Pada tahun 2009 pilot plant dengan gravitasi untuk pembangkit listrik pusaran air dioptimalkan Turbin Zotlöterer turbin, dan Generator kuat dilengkapi dimana tenaga listrik untuk bisa meningkat menjadi 10 kW. Diikuti antara tahun 2007 dan 2010 lainnya Air pembangkit listrik pusaran gravitasi di Indonesia, Swiss, Irlandia dan di Austria.

2.7.1 Cara Kerja Turbin Vortex

Sistem PLTA pusaran air adalah sebuah teknologi baru yang memanfaatkan energi yang terkandung dalam pusaran air yang besar dengan diciptakan melalui perbedaan head rendah di sungai.

Cara kerja turbin Vortex :

1. Air Sungai dari tepi sungai disalurkan dan dibawake tangki sirkulasi. Tangki sirkulasi ini memiliki suatu lubang lingkaran pada dasarnya.

2. Tekanan rendah pada lubang dasar tangki dan kecepatan air pada titik masuk tangki sirkulasi mempengaruhi kekuatan aliran vortex.

3. Energi potensial seluruhnya diubah menjadi energy kinetic rotasi diinti

Dokumen terkait