• Tidak ada hasil yang ditemukan

Laplace Adomian Decomposition Method

Dalam dokumen Fractional Differential Equations (Halaman 106-118)

Navier-Stokes Equation

3. Laplace Adomian Decomposition Method

In this unit, we present, Laplace Adomian decomposition method for solving, multi dimensional Naiver-Stokes equation written in an operator form

Dβt( f1) + f1∂ f1

∂x1+ f2∂ f1

∂x2+ f3∂ f1

∂x3= ρ

2f1

∂x21 +2f1

∂x22 +2f1

∂x23

1 ρ ∂p

∂x1, Dβt( f2) + f1∂ f2

∂x1+ f2∂ f2

∂x2+ f3∂ f2

∂x3= ρ

2f2

∂x21 +2f2

∂x22 +2f2

∂x23

1 ρ

∂p

∂x2, Dβt( f3) + f1∂ f3

∂x1+ f2∂ f3

∂x2+ f3∂ f3

∂x3= ρ

2f3

∂x21 +2f3

∂x22 +2f3

∂x23

1 ρ

∂p

∂x3,

(1)

with initial conditions

⎧⎪

⎪⎨

⎪⎪

f1(x1, x2, x3, 0) = f (x1, x2, x3), f2(x1, x2, x3, 0) = h(x1, x2, x3), f3(x1, x2, x3, 0) = g(x1, x2, x3).

(2)

Applying the Laplace transform to (1), we have

L Dtβ( f1)

+ L

! f1∂ f1

∂x1+ f2∂ f1

∂x2+ f3∂ f1

∂x3

"

= Lρ

2f1

∂x21 +2f1

∂x22 +2f1

∂x23

− L

!1 ρ

∂p

∂x1

"

,

L Dtβ( f2)

+ L

! f1∂ f2

∂x1+ f2∂ f2

∂x2+ f3∂ f2

∂x3

"

= Lρ

2f2

∂x21 +2f2

∂x22 +2f2

∂x23

− L

!1 ρ

∂p

∂x2

"

,

L Dtβ( f3)

+ L

! f1∂ f3

∂x1+ f2∂ f3

∂x2+ f3∂ f3

∂x3

"

= Lρ

2f3

∂x21 +2f3

∂x22 +2f3

∂x23

− L

!1 ρ

∂p

∂x3

"

,

(3)

Symmetry 2019, 11, 149

and using the differentiation property of Laplace transform, we get L( f1) = f(x1, x2, x3)

s 1

sβL! f1∂ f1

∂x1+ f2∂ f1

∂x2+ f3∂ f1

∂x3

"

+ ρ sβL

2f1

∂x21 +2f1

∂x22 +2f1

∂x23 1 sβL!

1 ρ ∂p

∂x1

"

,

L( f2) =h(x1, x2, x3)

s 1

sβL

! f1∂ f2

∂x1+ f2∂ f2

∂x2+ f3∂ f2

∂x3

"

+ ρ sβL

2f2

∂x21 +2f2

∂x22 +2f2

∂x23 1 sβL

!1 ρ

∂p

∂x2

"

,

L( f3) =g(x1, x2, x3)

s 1

sβL

! f1∂ f3

∂x1+ f2∂ f3

∂x2+ f3∂ f3

∂x3

"

+ ρ sβL

2f3

∂x21 +2f3

∂x22 +2f3

∂x23 1 sβL

!1 ρ

∂p

∂x3

"

,

(4)

Adomian solutions are ⎧

⎪⎪

⎪⎪

f1(x1, x2, x3, t) = ∑j=0uj, f2(x1, x2, x3, t) = ∑j=0vj, f3(x1, x2, x3, t) = ∑j=0wj,

(5)

and the nonlinear terms are define by the infinite series of Adomian polynomials,

⎧⎪

⎪⎨

⎪⎪

N1( f1) = ∑j=0Aj, N2( f2) = ∑j=0Bj, N3( f3) = ∑j=0Cj.

(6)

Aj= 1 j!

dj j

 N1

i=0juj)

λ=0

,

Bj= 1 j!

 dj j

 N2

i=0jvj)

λ=0

,

Cj= 1 j!

 dj j

 N3

i=0jwj)

λ=0

.

(7)

96

using LADM solutions in equation (4), we get

L

 j=0

uj+1



= f(x1, x2, x3)

s 1

sβL

1 ρ

∂p

∂x1



1 sβL



j=0f1 j

∂(∑j=0f1 j)

∂x1 +



j=0f2 j

∂(∑j=0f1 j)

∂x2 +

 j=0

f3 j



j=0f1 j

∂x3

+ ρ sβL

2(∑j=0f1 j)

∂x21 +2(∑j=0f1 j)

∂x22 +2(∑j=0f1 j)

∂x23 , L

 j=0

vj+1



= h(x1, x2, x3)

s 1

sβL

1 ρ

∂p

∂x1



1 sβL



j=0f1 j

∂(∑j=0f2 j)

∂x1 +



j=0f2 j

∂(∑j=0f2 j)

∂x2 +

 j=0

f3 j



j=0f2 j

∂x3

+ ρ sβL

2(∑j=0f2 j)

∂x21 +2(∑j=0f2 j)

∂x22 +2(∑j=0f2 j)

∂x23 , L



j=0

wj+1



= g(x1, x2, x3)

s 1

sβL

1 ρ ∂p

∂x1



1 sβL



j=0

f1 j

∂(∑j=0f3 j)

∂x1 +



j=0

f2 j

∂(∑j=0f3 j)

∂x2 +



j=0

f3 j



j=0f3 j

∂x3

+ ρ sβL

2(∑j=0f3 j)

∂x21 +2(∑j=0f3 j)

∂x22 +2(∑j=0f3 j)

∂x23 .

(8)

Applying the linearity of the Laplace transform,

⎧⎪

⎪⎪

⎪⎪

⎪⎩

L(uo) = f(x1,xs2,x3)+s1βL

1ρ∂p

∂x1

, L(vo) =h(x1,xs2,x3)+s1βL

1ρ∂p

∂x2

, L(wo) =g(x1,xs2,x3)+s1βL

1ρ∂p

∂x3

.

(9)

Symmetry 2019, 11, 149

L

 j=0

uj+1



= −1 sβL[

 j=0

f1 j

∂(∑j=0f1 j)

∂x1 +



j=0f2 j

∂(∑j=0f1 j)

∂x2

+



j=0

f3 j



j=0f1 j

∂x3 ] + ρ sβL

2(∑j=0f1 j)

∂x21 +2(∑j=0f1 j)

∂x22 +2(∑j=0f1 j)

∂x23 , L



j=0

vj+1



= −1 sβL[



j=0

f1 j

∂(∑j=0f2 j)

∂x1 +



j=0

f2 j

∂(∑j=0f2 j)

∂x2

+

 j=0

f3 j



j=0f2 j

∂x3 ] + ρ sβL

2(∑j=0f2 j)

∂x21 +2(∑j=0f2 j)

∂x22 +2(∑j=0f2 j)

∂x23 , L

 j=0

wj+1



= −1 sβL[

 j=0

f1 j

∂(∑j=0f3 j)

∂x1 +



j=0f2 j

∂(∑j=0f3 j)

∂x2

+

 j=0

f3 j



j=0f3 j

∂x3 ] + ρ sβL

2(∑j=0f3 j)

∂x21 +2(∑j=0f3 j)

∂x22 +2(∑j=0f3 j)

∂x23 .

(10)

For j= 0, and j = 1, 2...∞.

L(u1) = −1 sβL

! u0∂(u0)

∂x1 + v0∂(v0)

∂x2 + w0∂(u0)

∂x3

"

+ ρ sβL

2(u0)

∂x21 +2(u0)

∂x22 +2(u0)

∂x23 , L(v1) = −1

sβL! u0∂(v0)

∂x1 + v0∂(v0)

∂x2 + w0∂(v0)

∂x3

"

+ ρ sβL

2(v0)

∂x21 +2(v0)

∂x22 +2(v0)

∂x23 , L(w1) = −1

sβL

! u0∂(w0)

∂x1 + v0∂(v0)

∂x2 + w0∂(w0)

∂x3

"

+ ρ sβL

2(w0)

∂x21 +2(w0)

∂x22 +2(w0)

∂x23 . (11)

Next applying the inverse Laplace transform, we can calculate uj, vjand wj(j > 0). In specific cases the exact result in the closed form can also be achieve.

Example 1. Consider time-fractional order of two-dimensional Navier-Stock equation with q1= −q2= q as,

Dtβ( f1) + f1∂ f1

∂x1+ f2∂ f1

∂x2= ρ

2f1

∂x21 +2f1

∂x22 + q,

Dtβ( f2) + f1∂ f2

∂x1+ f2∂ f2

∂x2= ρ

2f2

∂x21 +2f2

∂x22 − q,

(12)

with initial conditions #

f1(x1, x2, 0) = − sin(x1+ x2),

f2(x1, x2, 0) = sin(x1+ x2). (13)

98

Applying the Laplace transform to (12), we have

L

 j=0

uj+1



= f1 j s 1

sβL

 j=0

f1 j

∂(∑j=0f1 j)

∂x1 +

 j=0

f1 j

∂(∑j=0f1 j)

∂x2

+ ρ sβL

2(∑j=0f1 j)

∂x21 +2(∑j=0f1 j)

∂x22 , L

 j=0

vj+1



= f2 j s 1

sβL

 j=0

f1 j

∂(∑j=0f2 j)

∂x1 +



j=0f1 j

∂(∑j=0f2 j)

∂x2

+ ρ sβL

2(∑j=0f2 j)

∂x21 +2(∑j=0f2 j)

∂x22 .

(14)

uo= L−1

!− sin(x1+ x2) s

"

= − sin(x1+ x2),

vo= L−1

!sin(x1+ x2) s

"

= sin(x1+ x2),

(15)

L(u1) = −1 sβL

!

− sin(x1+ x2)∂(− sin(x1+ x2))

∂x1 + sin(x1+ x2)∂(sin(x1+ x2))

∂x2

"

+ 1 sβ

2(− sin(x1+ x2))

∂x2 +2(− sin(x1+ x2))

∂x22 + 1

sβL(q), L(v1) = −1

sβL

!

− sin(x1+ x2)∂(sin(x1+ x2))

∂x1 + sin(x1+ x2)∂(sin(x1+ x2))

∂x2

"

+ 1 sβ

2(sin(x1+ x2))

∂x2 +2(sin(x1+ x2))

∂x22 1

sβL(q),

(16)

⎧⎨

u1= L−1 2ρ sin(x

1+x2) sβ+1 +sβ+1q

, v1= L−1 −2ρ sin(x

1+x2) sβ+1 sβ+1q

, (17)

u1= 2ρ sin(x1+ x2) tβ

Γ(β + 1)+ q Γ(β + 1), v1= −2ρ sin(x1+ x2) tβ

Γ(β + 1)+ q Γ(β + 1),

⎧⎨

u2= −4ρ2sin(x1+ x2)Γ(2β+1)t ,

v2= 4ρ2sin(x1+ x2)Γ(2β+1)t . (18) The LADM solution for example (1) is

f1(x1, x2, t) = u0(x1, x2, t) + u1(x1, x2, t) + u2(x1, x2, t) + u3(x1, x2, t) + ...un(x1, x2, t), f2(x1, x2, t) = v0(x1, x2, t) + v1(x1, x2, t) + v2(x1, x2, t) + v3(x1, x2, t) + ...vn(x1, x2, t),

Symmetry 2019, 11, 149

f1(x1, x2, t) = − sin(x1+ x2) + 2ρ sin(x1+ x2) tβ

Γ(β + 1)+ q Γ(β + 1)

− 4ρ2sin(x1+ x2) t Γ(2β + 1)+ ...

f2(x1, x2, t) = sin(x1+ x2) − 2ρ sin(x1+ x2) tβ

Γ(β + 1)+ q Γ(β + 1) + 4ρ2sin(x1+ x2) t

Γ(2β + 1)+ ...

(19)

whenβ= 1, then LADM solution is

f1(x1, x2, t) = −e2ρt(sin(x1+ x2)), f2(x1, x2, t) = e2ρt(sin(x1+ x2)).

For q= 0 gave the exact result of classical Navier-Stokes equation for the velocity. The velocity profile of the ordinary Naiver-Stokes equation is shown in Figures, and the velocity profile of Naiver-Stokes equation with β= 1, 0.5 and 0.8 is shown in Figures1–3.

Figure 1. For example 1, the velocity profiles f1, f2of NS equation atβ = 0.8, q = 0, ρ = 0.5, t = 3.

100

Figure 2. For example 1, the velocity profiles f1, f2of NS equation atβ = 0.5, q = 0, ρ = 0.5, t = 3.

Figure 3. For example 2, the velocity profiles f1, f2of NS equation atβ = 0.5, q = 0, ρ = 0.5, t = 0.05.

Symmetry 2019, 11, 149

Example 2. The study of time fractional of order two dimensional Naiver-Stokes Equation (12) with initial conditions

# u(x, y, 0) = −ex1+x2,

v(x, y, 0) = ex1+x2. (20)

Taking Laplace transform of (12)

# L(uo) =−ex1+x2s ,

L(vo) =ex1+x2s , (21)

L(u1) = −1 sβL!

−ex1+x2∂(−ex1+x2)

∂x1 + −ex1+x2∂(ex1+x2)

∂x2

"

+ ρ sβL

2(−ex1+x2)

∂x21 +2(−ex1+x2)

∂x22 + 1 sβL(q), L(v1) = −1

sβL

!

−ex1+x2∂(ex1+x2)

∂x1 + ex1+x2∂(ex1+x2)

∂x2

"

+ ρ sβL

2(ex1+x2)

∂x21 +2(ex1+x2)

∂x22 1 sβL(q),

(22)

L(u1) =

!−2ρex1+x2 sβ+1

"

+ q

sβ+1, L(v1) =

!2ρex1+x2 sβ+1

"

q

sβ+1, (23)

L(u2) =!−4ρ2ex1+x2 s2β+2

"

, L(v2) =!

2ex1+x2 s2β+2

"

. (24)

Applying the inverse Laplace transform,

uo= L−1

!−ex1+x2 s

"

= −ex1+x2,

vo= L−1

!ex1+x2 s

"

= ex1+x2,

u1= L−1!−2ρex1+x2 sβ+1

"

+ L−1! q sβ+1

"

= −2ρex1+x2 tβ

Γ(β + 1)+ q Γ(β + 1) v1= L−1

!2ρex1+x2 sβ+1

"

− L−1

! q sβ+1

"

= 2ρex1+x2 tβ

Γ(β + 1)+ q Γ(β + 1)

u2= L−1!−4ρ2ex1+x2 s2β+2

"

= −(2ρ)2ex1+x2 t Γ(2β + 1), v2= L−1!

2ex1+x2 s2β+2

"

= (2ρ)2ex1+x2 t Γ(2β + 1), The LADM solution for example (2) is

u(x1, x2, t) = u0(x1, x2, t) + u1(x1, x2, t) + u2(x1, x2, t) + u3(x1, x2, t) + ...un(x1, x2, t), v(x1, x2, t) = v0(x1, x2, t) + v1(x1, x2, t) + v2(x1, x2, t) + v3(x1, x2, t) + ...vn(x1, x2, t),

102

f1(x1, x2, t) = −ex1+x2− 2ρex1+x2 tβ

Γ(β + 1)+ q Γ(β + 1)

− (2ρ)2ex1+x2 t Γ(2β + 1)+ ...

f2(x1, x2, t) = ex1+x2+ 2ρex1+x2 tβ

Γ(β + 1) q Γ(β + 1) + (2ρ)2ex1+x2 t

Γ(2β + 1)+ ...

(25)

whenβ= 1, then LADM solution is

f1(x1, x2, t) = −ex1+x2+2ρt, f2(x1, x2, t) = ex1+x2+2ρt.

The exact result of usual Navier-Stokes problem for the velocity profile. The activities of velocity profile of the Navier-Stokes problem is shown forβ= 1 and 0.5 in Figure4correspondingly.

Figure 4. For example 3, the velocity profiles f1, f2, f3of NS equation atβ = 0.5, x3= 0.5, t = 0.1.

Example 3. The study time fractional order three dimensional Navier-Stokes Equation (3.1) byq1= q2= q3

= 0, with initial conditions

⎪⎪

⎪⎪

u(x1, x2, x3, 0) = −0.5x1+ x2+ x3, v(x1, x2, x3, 0) = x1− 0.5x2+ x3, w(x1, x2, x3, 0) = x1+ x2− 0.5x3.

(26)

Symmetry 2019, 11, 149

Taking Laplace transform of (1),

L(uo) = −0.5x1+ x2+ x3

s ,

L(vo) =x1− 0.5x2+ x3

s ,

L(wo) =x1+ x2− 0.5x3

s ,

(27)

L(u1) = −2.25x1 sβ+1 , L(v1) = −2.25x2

sβ+1 , L(w1) = −2.25x3 sβ+1 ,

(28)

L(u2) = −(2.25)2x1 s3β+3 , L(v2) = −(2.25)2x2

s3β+3 , L(w2) = −(2.25)2x3

s3β+3 .

(29)

Applying the inverse Laplace transform,

uo= L−1

!−0.5x1+ x2+ x3

s

"

= −0.5x1+ x2+ x3,

vo= L−1

!x1− 0.5x2+ x3

s

"

= x1− 0.5x2+ x3,

wo= L−1!

x1+ x2− 0.5x3

s

"

= x1+ x2− 0.5x3,

u1= L−1

!−2.25x1

sβ+1

"

= −2.25x1 tβ Γ(β + 1), v1= L−1

!−2.25x2

sβ+1

"

= −2.25x2 tβ Γ(β + 1), w1= L−1!−2.25x3

sβ+1

"

= −2.25x3 tβ Γ(β + 1), u2= L−1!−(2.25)2x1

s3β+3

"

= −(2.25)2x1 t Γ(3β + 1), v2= L−1

!−(2.25)2x2 s3β+3

"

= −(2.25)2x2 t Γ(3β + 1), w2= L−1

!−(2.25)2x3

s3β+3

"

= −(2.25)2x3 t Γ(3β + 1), The LADM solution for example (3) is

f1(x1, x2, x3, t) = u0(x1, x2, x3, 0) + u1(x1, x2, x3, 0) + u2(x1, x2, x3, 0) + u3(x1, x2, x3, 0) + ...uj(x1, x2, x3, 0),

f2(x1, x2, x3, t) = v0(x1, x2, x3, 0) + v1(x1, x2, x3, 0) + v2(x1, x2, x3, 0) + v3(x1, x2, x3, 0) + ...vj(x1, x2, x3, 0),

f3(x1, x2, x3, t) = w0(x1, x2, x3, 0) + w1(x1, x2, x3, 0) + w2(x1, x2, x3, 0) + w3(x1, x2, x3, 0) + ...wj(x1, x2, x3, 0),

104

f1(x1, x2, x3, t) = −0.5x1+ x2+ x3− 2.25x1 tβ

Γ(β + 1)− (2.25)2x1 t

Γ(3β + 1)− (2.25)4x1 t Γ(7β + 1)

− (2.25)6x1 t15β Γ(15β + 1)+ ...

f2(x1, x2, x3, t) = x1− 0.5x2+ x3− 2.25x2 tβ

Γ(β + 1)− (2.25)2x2 t

Γ(3β + 1)− (2.25)4x2 t Γ(7β + 1)

− (2.25)6x2 t15β Γ(15β + 1)+ ...

f3(x1, x2, x3, t) = x1+ x2− 0.5x3− 2.25x3 tβ

Γ(β + 1)− (2.25)2x3 t

Γ(3β + 1)− (2.25)4x3 t Γ(7β + 1)

− (2.25)6x3 t15β Γ(15β + 1)+ ...

whenβ= 1, then LADM solution is

f1(x1, x2, x3, t) = −0.5x1+ x2+ x3− 2.25x1t 1− 2.25t2 , f2(x1, x2, x3, t) =x1− 0.5x2+ x3− 2.25x2t

1− 2.25t2 , f3(x1, x2, x3, t) =x1+ x2− 0.5x3− 2.25x3t

1− 2.25t2 . 4. Description of Figures

Figure1is consists of two graphs namely Graph 1 and Graph 2. Graph 1 and Graph 2 represents the velocity profile f1and f2of the Navier-Stokes equation respectively in example 3.1 atβ= 1.

Figure2is consists of two graphs namely Graph 3 and Graph 4. Graph 3 and Graph 4 represents the velocity profile f1and f2of the Navier-Stokes equation respectively in example 3.1 atβ= 0.8.

Figure3is consists of two graphs namely Graph 5 and Graph 6. Graph 5 and Graph 6 represents the velocity profile f2and f2of the Navier-Stokes equation respectively in example 3.1 atβ= 0.5.

Similarly in example 3.2, the plot of two velocity profiles f1and f2for the Navier-Stoke equation are represented by Graph 7 and Graph 9 atβ= 1 and Graph 8 and Graph 10 at β = 0.5 respectively.

Also, in example 3.3, the plot of three velocity profiles f1, f2and f3for the Navier-Stoke equation are represented by Graph 11, Graph 12 and Graph 13 atβ= 1 and Graph 14, Graph 15 and Graph 16 atβ= 0.5 respectively.

5. Conclusions

In this paper, Laplace Adomian decomposition technique is assumed for the time-fractional classical Navier-Stokes solution of with given initial conditions. The analytical solution is given in for the power series for the given problem. The solution of the above three problems has shown, that the rate of convergence of the present method is overlapping or high than ADM and HAM. Moreover LADM have minimum calculations, simplifications as compared to ADM [12] and HPM [6].

Author Contributions: The authors have equally contributed to accomplish this research work.

Funding: Sarhad University of Science and Information Technology, Peshawar, Pakistan.

Conflicts of Interest: The authors have no conflict of interest.

Symmetry 2019, 11, 149

References

1. Khuri, S. A Laplace decomposition algorithm applied to a class of nonlinear differential equations.

J. Appl. Math. 2001, 1, 141–155. [CrossRef]

2. Ahmed, H.; Bahgat, M.; Zaki, M. Numerical approaches to system of fractional partial differential equations.

J. Egypt. Math. Soc. 2017, 25, 141–150. [CrossRef]

3. Jafari, H.; Khalique, C.; Nazari, M. Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion wave equations. Appl. Math. Lett. 2011, 24, 1799–1805. [CrossRef]

4. Ahmad Alhendi, F.; Alderremy, A. Numerical Solutions of Three-Dimensional Coupled Burgers’ Equations by Using Some Numerical Methods. J. Appl. Math. Phys. 2016, 4, 2011–2030. [CrossRef]

5. Mishra, V.; Rani, D. Newton-Raphson based modified Laplace Adomian decomposition method for solving quadratic Riccati differential equations. In Proceedings of the 4th International Conference on Advancements in Engineering & Technology, Punjab, India, 18–19 March 2016; Volume 57.

6. Haq, F.; Shah, K.; Khan, A.; Shahzad, M.; Rahman, G. Numerical Solution of Fractional Order Epidemic Model of a Vector Born Disease by Laplace Adomian Decomposition Method. Punjab Univ. J. Math. 2017, 49, 13–22.

7. Qasim, A.F.; AL-Rawi, E.S. Adomian Decomposition Method with Modified Bernstein Polynomials for Solving Ordinary and Partial Differential Equations. J. Appl. Math. 2018. [CrossRef]

8. Yousef, H.M.; Ismail, A.M. Application of the Laplace Adomian decomposition method for solution system of delay differential equations with initial value problem. In AIP Conference Proceedings; AIP Publishing:

Melville, NY, USA, 2018; Volume 1974, p. 020038.

9. Rani, D.; Mishra, V. Modification of Laplace Adomian decomposition method for solving nonlinear Volterra integral and integro-differential equations based on Newton Raphson formula. Eur. J. Pure Appl. Math.

2018, 11, 202–214. [CrossRef]

10. Birajdar, G. Numerical Solution of Time Fractional Navier-Stokes Equation by Discrete Adomian decomposition method. Nonlinear Eng. 2014, 3,21–26. [CrossRef]

11. Carpinteri, A.; Mainardi, F. (Eds.) Fractals and Fractional Calculus in Continuum Mechanics; Springer: Berlin, Germany, 2014; Volume 378.

12. Momani, S.; Odibat, Z. Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2006, 177, 488–494. [CrossRef]

13. Zhou, Y.; Peng, L. Weak solutions of the time-fractional Navier-Stokes equations and optimal control.

Comput. Math. Appl. 2017, 73, 1016–1027. [CrossRef]

14. Kumar, S.; Kumar, D.; Abbasbandy, S.; Rashidi, M. Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method. Ain Shams Eng. J. 2014, 5, 569–574 [CrossRef]

15. Edeki, S.O.; Akinlabi, G.O. Coupled Method for Solving Time-Fractional Navier-Stokes Equation. Int. J.

Circuits Syst. Signal Process. 2018, 12, 27–34.

16. Singh, B.; Kumar, P. FRDTM for numerical simulation of multi-dimensional, time-fractional model of Navier-Stokes equation. Ain Shams Eng. J. 2016, 9, 827–834. [CrossRef]

17. Ganji, Z.; Ganji, D.; Ganji, A.; Rostamian, M. Analytical solution of time-fractional Navier-Stokes equation in polar coordinate by homotopy perturbation method. Numer. Methods Part. Differ. Equ. 2010, 26, 117–124.

[CrossRef]

18. Hilfer, R. Applications of Fractional Calculus in Physics; World Science Publishing: River Edge, NJ, USA, 2000.

19. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations. 1993.

Available online:http://www.citeulike.org/group/14583/article/4204050(accessed on 29 January 2019).

20. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998; Volume 198.

 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open accessc article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

106

symmetry

S S

Article

Even Higher Order Fractional Initial Boundary Value

Dalam dokumen Fractional Differential Equations (Halaman 106-118)

Dokumen terkait