• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA

2.3 Mesin Diesel

360 D – 1160 347 10 Abu tersulfatkan % massa - 0,02 D - 874 0,01

11 Belerang Ppm – m (mg/kg) - 100 D – 5453 0,72 12 Angka Asam Mg-KOH/g - 0,8 D – 664 0,01 13 Glyserol Bebas % massa - 0,02 D - 6584 - 14 Glyserol Bebas % massa - 0,24 D - 6584 -

Sumber: I Wayan Susila, *) Berdasarkan ASTM D 976-91

2.3 Mesin Diesel

Mesin diesel juga disebut “Motor Penyalaan Kompresi” oleh karena penyalaannya dilakukan dengan menyemprotkan bahan bakar ke dalam udara yang telah bertekanan dan bertemperatur ringgi sebagai akibat dari proses kompresi di dalam ruang bakar. Mesin diesel pertama kali ditemukan oleh Rudolf Diesel pada tahun 1892. Prinsip kerja pembakaran motor diesel yaitu udara segar dihisap masuk kedalam silinder atau ruang bakar kemudian udara tersebut dikompressi oleh torak sehingga udara memiliki temperatur dan tekanan yang tinggi, dan sebelum torak mencapai titik mati atas, bahan bakar disemprotkan ke ruang bakar dan terjadilah pembakaran.

Agar bahan bakar diesel dapat terbakar dengan sendirinya, maka perbandingan kompresi mesin diesel harus berkisar antara 15 – 22, sedangkan tekanan kompresinya mencapai 20 – 40 bar dengan suhu 500 – 700 0

Mesin diesel menghasilkan tekanan kerja yang tinggi, itu sebabnya konstruksi motor diesel lebih kokoh dan lebih besar. Disamping itu, mesin diesel C. Aplikasi dari motor diesel banyak pada industri-industri sebagai motor stasioner ataupun untuk kendaraan-kendaraan dan kapal laut dengan ukuran yang besar. Hal ini dikarenakan motor diesel mengkonsumsi bahan bakar ± 25% lebih rendah dari motor bensin, lebih murah dan perawatannya lebih sederhana (Kubota, S., dkk, 2001).

15

menghasilkan bunyi yang lebih keras, warna dan bau gas yang kurang menyenangkan. Namun dipandang dari segi ekonomi, bahan bakar serta polusi udara, motor diesel masih lebih disukai (Mathur, 1980).

Menurut Willard W.P (1996) efisiensi termis motor diesel berada di bawah 50% sedangkan menurut Khovakh (1979), efisiensi termis berkisar pada 29% - 42% dan sisanya adalah kerugian-kerugian energi. Energi kalor yang dimanfaatkan oleh mesin tidaklah terlalu besar,sisanya merupakan kerugian - kerugian energi, diantaranya energi kalor yang hilang akibat pendinginan mesin, energi kalor yang hilang bersama gas buang, energi kalor yang hilang akibat pembakaran tidak sempurna, energi kalor yang hilang karena kebocoran gas, dan kehilangan lainnya akibat radiasi dan konveksi.

Siklus diesel (ideal) pembakaran tersebut dimisalkan dengan pemasukan panas pada volume konstan (Y. A. Çengel and M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed, McGraw-Hill, 2006.).

Gambar 2.1 P-v diagram Mesin Diesel [13]

Keterangan Gambar: P = Tekanan (atm)

16

qin

q

= Kalor yang masuk (kJ) out = Kalor yang dibuang (kJ)

Gambar 2.2 Diagram T-S Mesin Diesel [13]

Keterangan Gambar : T = Temperatur (K) S = Entropi (kJ/kg.K)

q

in

q

= Kalor yang masuk (kJ)

out = Kalor yang dibuang (kJ)

Keterangan Grafik: 1-2 Kompresi Isentropik

2-3 Pemasukan Kalor pada Tekanan Konstan 3-4 Ekspansi Isentropik

17

2.3.1 Prinsip Kerja Mesin Diesel

Prinsip kerja mesin diesel 4 tak sebenarnya sama dengan prinsip kerja mesin otto, yang membedakan adalah cara memasukkan bahan bakarnya. Pada mesin diesel bahan bakar di semprotkan langsung ke ruang bakar dengan menggunakan injector. Dibawah ini adalah langkah dalam proses mesin diesel 4 langkah :

Gambar 2.3 Prinsip Kerja Mesin Diesel [15]

1. Langkah Isap

Pada langkah ini piston bergerak dari TMA (Titik Mati Atas) ke TMB (Titik Mati Bawah). Saat piston bergerak ke bawah katup isap terbuka yang menyebabkan ruang didalam silinder menjadi vakum,sehingga udara murni langsung masuk ke ruang silinder melalui filter udara.

2. Langkah kompresi

Poros engkol terus berputar, piston bergerak dari TMB ke TMA, kedua katup tertutup. Udara murni yang terhisap tadi terkompresi dalam ruang bakar. Karena terkompresi suhu dan tekanan udara tersebut naik hingga mencapai 35 atm dengan temperatur 500฀ - 800฀ (pada perbandingan kompresi 20 : 1).

18 3. Langkah Usaha

Poros engkol masih terus berputar, beberapa derajat sebelum torak mencapai TMA di akhir langkah kompresi, bahan bahar diinjeksikan ke dalam ruang bakar. Karena suhu udara kompresi yang tinggi terjadilah pembakaran yang menghasilkan tekanan eksplosif yang mendorong piston bergerak dari TMA ke TMB. Kedua katup masih dalam keadaan tertutup. Gaya dorong ke bawah diteruskan oleh batang piston ke poros engkol untuk dirubah menjadi gerak rotasi. Langkah usaha ini berhenti ketika katup buang mulai membuka beberapa derajat sebelum torak mencapai TMB.

4. Langkah Buang

Pada langkah ini, gaya yang masih terjadi di flywhell akan menaikkan kembali piston dari TMB ke TMA, bersamaan itu juga katup buang terbuka sehingga udara sisa pembakaran akan di dorong keluar dari ruang silinder menuju exhaust manifold dan langsung menuju knalpot

2.3.2 Performansi Mesin Diesel 2.3.2.1 Daya Poros

Daya mesin adalah besarnya kerja mesin selama waktu tertentu. Pada motor bakar daya yang berguna adalah daya poros, dikarenakan poros tersebut menggerakan beban. Daya poros dibangkitkan oleh daya indikator , yang merupakan daya gas pembakaran yang menggerakan torak selanjutnya menggerakan semua mekanisme, sebagian daya indikator dibutuhkan untuk mengatasi gesekan mekanik, seperti pada torak dan dinding silinder dan gesekan antara poros dan bantalan. Prestasi motor bakar pertama-tama tergantung dari daya yang dapat ditimbulkannya. Semakin tinggi frekuensi putar motor makin tinggi daya yang diberikan hal ini disebabkan oleh semakin besarnya frekuensi semakin banyak langkah kerja yang dialami pada waktu yang sama. Dengan demikian besar daya poros itu adalah :

19 Dimana : PB T = torsi ( Nm ) = daya ( W ) n = putaran mesin ( Rpm ) 2.3.2.2 Torsi

Torsi adalah perkalian antara gaya dengan jarak. Selama proses usaha maka tekanan-tekanan yang terjadi di dalam silinder motor menimbulkan suatu gaya yang luar biasa kuatnya pada torak. Gaya tersebut dipindahkan kepada pena engkol melalui batang torak , dan mengakibatkan adanya momen putar atau torsi pada poros engkol. Untuk mengetahui besarnya torsi digunakan alat

dynamometer. Biasanya motor pembakaran ini dihubungkan dengan dynamometer

dengan maksud mendapatkan keluaran dari motor pembakaran dengan cara menghubungkan poros motor pembakaran dengan poros dynamometer dengan menggunakan kopling elastik.

T = ………...(2.2)

2.3.3.3 Konsumsi Bahan Bakar Spesifik (SFC)

Konsumsi bahan bakar spesifik merupakan salah satu parameter prestasi yang penting di dalam suatu motor bakar. Parameter ini biasa dipakai sebagai ukuran ekonomi pemakaian bahan bakar yang terpakai per jam untuk setiap daya kuda yang dihasilkan.

SFC = ……… (2.3)

……… (2.4)

20 Dengan :

SFC = konsumsi bahan bakar spesifik (kg/kw.h) PB = daya (W)

= konsumsi bahan bakar sgf = spesifik grafity

t = waktu (jam)

2.3.3.4 Efisiensi Thermal

Kerja berguna yang dihasilkan selalu lebih kecil dari pada energi yang dibangkitkan piston karena sejumlah enegi hilang akibat adanya rugi-rugi mekanis (mechanical losses). Dengan alasan ekonomis perlu dicari kerja maksimium yang dapat dihasilkan dari pembakaran sejumlah bahan bakar. Efisiensi ini disebut juga sebagai efisiensi termal brake ( brake thermal efficiency, ηb

Jika daya keluaran P

).

B dalam satuan KW, laju aliran bahan bakar mf dalam satuan kg/jam, maka:

ηb = 3600 ……… (2.5)

2.3.3.5 Rasio Udara - Bahan Bakar (AFR)

Energi yang masuk kedalam sebuah mesin berasal dari pembakaran bahan bakar hidrokarbon. Udara digunakan untuk menyuplai oksigen yang dibutuhkan untuk mendapatkan reaksi kimia didalam ruang bakar. Agar terjadinya reaksi pembakaran, jumlah oksigen dan bahan bakar harus tepat. Yang dirumuskan sebagai berikut:

………(2.6)

Dokumen terkait