INSTITUT PERTANIAN BOGOR BOGOR
2 TINJAUAN PUSTAKA
3.3 Metode Penelitian
Penelitian dilakukan dalam beberapa tahapan yang terdiri dari tahap pengambilan dan preparasi sampel, analisis histologis kangkung air, analisis
proksimat daun dan batang kangkung air segar dan kukus, kandungan mineral kangkung air segar dan khusus. Secara umum tahap penelitian ini dapat dilihat pada Gambar 6
Gambar 6. Diagram alir Metode Penelitian 3.3.1 Pengambilan dan preparasi sampel
Proses pengambilan sampel meliputi pengambilan sampel tanaman kangkung air dari Desa Sinarsari, Dramaga.
Tanaman kangkung diambil dengan memilih tanaman yang ukurannya telah cukup untuk dikonsumsi (berdasarkan keterangan warga setempat). Selanjutnya diambil secara acak ± 30 batang tanaman kangkung air (ukuran minimal sampel), dikarakterisasi (diukur luas daun, panjang dan tebal batang, panjang akar dan rendemen) dan disimpan dalam coolbox agar tidak layu sampai tiba waktunya dianalisis.
3.3.2 Analisis histologi pembuatan preparat dengan metode preparat segar Pengamatan jaringan tanaman diawali dengan pembuatan preparat segar tanaman kangkung air (Ipomoea aquatica Forsk.) kemudian pengambilan gambar objek pada mikroskop. Tahapannya terdiri atas persiapan dan pemotongan bagian daun, akar dan batang dengan ukuran 1-2 cm atau secukupnya, letakkan potongan tersebut diatas obyek kaca preparat, lalu teteskan air secukupnya agar sampel tidak mengering, letakkan sampel diatas meja mikroskop stereo, kemudian tekan (kunci) sampel tersebut dengan jari telunjuk kiri agar tidak bergeser. Gunakan silet yang baru dengan tangan kanan, tempelkan silet diujung jari telunjuk kiri,
1. pengambilan dan preparasi
sampel
2. Analisis histologis daun, batang, dan akar.
3.Analisis proksimat kangkung air segar dan kukus
4. Analisis mineral kangkung air segar dan khusus
lakukan pemotongan sampel dibawah mikroskop stereo setipis mungkin kemudian pisahkan potongan terbaik dengan jarum pentul, teteskan kembali sampel dengan air, pindahkan obyek glass yang telah terisi sampel pilihan di meja sampel mikroskop eletrik, dan lakukan pengamatan preparat. Diagram alir pembuatan preparat segar dapat dilihat pada Gambar 7.
Gambar 7 Diagram alir pembuatan preparat dengan metode preparat segar 3.3.3. Analisis proksimat
Analisis proksimat dilakukan terhadap tanaman kangkung air segar dan setelah pengukusan dengan ulangan sebanyak 3 kali. Analisis proksimat terdiri atas kadar air, kadar abu, kadar protein kasar, kadar lemak kasar, dan serat kasar. 1)Kadar air (AOAC 2007)
Tahap pertama yang dilakukan untuk menganalisis kadar air adalah mengeringkan cawan porselen dalam oven pada suhu 105 ºC selama 1 jam. Cawan tersebut diletakkan ke dalam desikator (± 15 menit) dan dibiarkan sampai dingin kemudian ditimbang. Cawan tersebut ditimbang kembali hingga beratnya konstan, sebanyak 5 gram contoh dimasukkan ke dalam cawan tersebut, kemudian dikeringkan dengan oven pada suhu 105 ºC selama 5 jam. Setelah selesai proses,
Peletakkan di kaca preparat
Penetesan air Tanaman kangkung air
Persiapan dan pemotongan
Penyayatan melintang
cawan tersebut dimasukkan ke dalam desikator dan dibiarkan sampai dingin dan selanjutnya ditimbang kembali. Perhitungan kadar air sampel adalah:
% Kadar air = x 100 %
2)Kadar abu (AOAC 2007)
Preparasi sampel tanaman untuk zat mineral adalah dengan menghilangkan seluruh bahan asing dari sampel, terutama tanah yang melekat atau pasir, namun untuk mencegah terjadinya pelepasan, maka tidak mencuci sampel secara berlebihan. Sampel segera dikeringkan untuk mencegah dekomposisi atau kehilangan berat. Sampel sebanyak 2 gram ditimbang dalam porselen dan tempatkan dalam suhu terkontrol dari tanur yang dipanaskan hingga 600 ºC. Pengabuan berlangsung selama 2 jam. Porselen segera dipindahkan ke dalam desikator untuk didinginkan dan penimbangan berat akhir sampel.
% (w/w) abu = x 100 %
3)Kadar protein kasar (AOAC 2007)
Tahap dalam analisis kadar protein terdiri atas destruksi, destilasi, dan titrasi. Analisis kadar protein dilakukan dengan metode Kjeldahl. Sampel sebanyak 0,7-2,2 gram dimasukkan ke dalam labu destruksi kemudian ditambahkan 0,7 gram HgO atau 0,65 metallic Hg, 15 gram serbuk K2SO4 atau Na2SO4 serta 25 mL H2SO4. Labu kemudian ditempatkan dalam posisi miring dan dipanaskan secara perlahan hingga buih menghilang. Larutan sampel dididihkan hingga larutan jernih pada suhu 410 ºC selama ± 2 jam.
Sampel didinginkan dan ditambahkan 200 mL H2O, 25 mL larutan sulfida atau tiosulfat serta dicampurkan dengan percepatan Hg. Selanjutnya, sampel ditambahkan sedikit bubuk Zn dan ditambahkan 15 gram NaOH. Kemudian, labu dihubungkan ke pipa destilasi pada kondensor. Hasil destilasi ditampung dalam erlenmeyer 125 yang berisi 25 mL asam borat (H3BO3) 4% yang mengandung indikator bromcherosol green 0,1 % dan methyl red 0,1 % dengan perbandingan 2:1. Erlenmeyer digoyangkan perlahan untuk mencampurkan hasil destilasi dan
labu dipanaskan hingga seluruh NH3 terdestilasi (≥ 150 mL hasil destilasi). Hasil destilasi kemudian dititrasi dengan larutan standar NaOH atau standar HCl 0,2 N hingga terjadi perubahan warna merah muda yang pertama kalinya.Volume titran dibaca dan dicatat. Kadar protein saat HCl standar digunakan adalah:
% N =
Kadar protein saat H2SO4 standar digunakan adalah:
% N=
4)Kadar lemak kasar (AOAC 2007)
Sampel sebanyak 1-5 gram (S) yang mengandung 100-200 mg lemak dimasukkan ke dalam selongsong selulosa. Banyaknya sampel berdasarkan kandungan lemaknya:
Lemak kasar (%) Berat sampel (g)
< 2 5
5 2-4
10 1-2
>20 1
Selongsong yang berisi sampel dikeringkan pada suhu 102 ºC ± 2 ºC selama 2 jam. Pelarut dan sampel harus bebas dari air untuk mencegah ekstraksi komponen yang larut air. Kapas bebas lemak dapat ditambahkan sebagai penutup selongsong sebelum pengeringan. Ekstraktor dipanaskan dan kondensor pendingin dinyalakan. Tabung ekstraksi kosong ditimbang sebagai T. Selongsong dimasukkan ke dalam tabung ekstraksi dan sejumlah pelarut heksan ditambahkan ke dalam tabung ekstraksi hingga menutupi sampel. Tabung ekstraksi ditempatkan di bawah kolom ekstraksi. Selongsong dibenamkan ke dalam pelarut dan dididihkan selama 20 menit. Selongsong diangkat dari pelarut lalu diekstraksi kembali selama 40 menit. Selanjutnya, pelarut dalam tabung didestilasi hingga menjadi murni dan mencapai kondisi kering. Tabung ekstraksi dipindahkan dari ekstraktor dan ditempatkan dalam proses penguapan untuk menyelesaikan evaporasi pelarut pada suhu rendah.
Tabung ekstaksi kemudian dikeringkan dalam 102 ºC ± 2 ºC selama 30 menit untuk menghilangkan kelembaban. Selanjutnya, tabung ekstraksi didinginkan pada suhu ruang dalam desikator dan ditimbang sebagai F.
% Lemak kasar (ekstrak heksan) = x 100% 5)Kadar serat kasar (AOAC 2007)
Ekstrak sampel sebanyak 2 gram (W1) dengan eter ataupun petroleum eter dimasukkan ke dalam gelas piala 600 ml dan ditambahkan 0,25-05 gram bumping granule, kemudian ditambahkan 200 ml H2SO4 1,25 % yang hampir mendidih. Larutan dididihkan selama 30 menit dan digoyangkan secara berkala. Kemudian larutan disaring dengan kertas saring dan bantuan corong Buchner lalu divakumkan pada tekanan 25 mm Hg. Residu dibilas dengan air yang hampir mendidih sebanyak 40-50 ml sebanyak 4 kali, kemudian disaring.
Residu dari kertas saring + corong Buchner dibilas dengan NaOH 1,25 % yang hampir mendidih ke dalam gelas piala dan direfluks selama 30 menit. Kemudian larutan disaring dan divakum kembali. Residu dibilas kembali dengan air yang hampir mendidih. Residu kembali dibilas dengan 25-30 ml H2SO4 1,25 % (hampir mendidih) sebanyak 1 kali dan dibilas dengan 20-30 ml air (hampir mendidih) sebanyak 2 kali lalu. Residu beserta kertas saring dikeringkan pada suhu 130 ± 2 ºC selama 2 jam atau semalam pada 110 ºC dan didinginkan dalam desikator kemudian ditimbang (W2). Residu + kertas saring diabukan pada suhu 550 ºC ± 10 ºC selama 2 jam, didinginkan dalam desikator dan ditimbang (W3).
Serat kasar % = x 100%
W2 : Bobot residu sebelum diabukan tanpa kertas saring dan cawan W3 : Bobot residu setelah diabukan tanpa cawan
3.3.4 Analisis mineral tanaman kangkung air dengan Atomic Absorption Spectrophotometer (Reitz et al. 1987)
Sampel kangkung air yang akan mengalami pengujian mineral dilakukan proses pengabuan basah terlebih dahulu. Pada proses pengabuan basah, sampel ditimbang sebanyak 1 g, kemudian dimasukkan ke dalam erlenmeyer 150 ml. Ke
dalam labu ditambahkan 5 ml HNO3 dan dibiarkan selama 1 jam. Labu ditempatkan di atas hotplate selama ± 4 jam dan ditambahkan 0,4 ml H2SO4 pekat, campuran (HClO4 dan HNO3) sebanyak 3 tetes, 2 ml akuades dan 0,6 ml HCl pekat. Larutan contoh kemudian diencerkan menjadi 100 ml dalam labu takar. Sejumlah larutan stok standar dari masing-masing mineral diencerkan dengan menggunakan akuades sampai konsentrasinya berada dalam kisaran kerja logam yang diinginkan.
Larutan standar, blanko dan contoh dialirkan ke dalam Atomic Absorption Spectrophotometer (AAS) merek Novva300 dengan panjang gelombang dari masing-masing jenis mineral. Langkah selanjutnya adalah pengukuran absorbansi atau tinggi puncak standar, blanko dan contoh pada panjang gelombang dan parameter yang sesuai untuk masing-masing mineral dengan spektrofotometer. Setelah diperoleh absorbansi standar, hubungkan antara konsentrasi standar (sebagai sumbu y) dengan absorban standar (sebagai sumbu x) sehingga diperoleh kurva standar mineral dengan persamaan garis linier y = ax+b (dimana y: variable terikat ; a: kemiringan gradient ; x: variable bebas ; b: konstanta) yang digunakan untuk perhitungan konsentrasi larutan sampel. Konsentrasi larutan sampel dihitung dengan mengalikan a dengan absorbansi contoh.
4 HASIL DAN PEMBAHASAN
4.1 Karakter Histologis Kangkung Air (Ipomoea aquatica Forsk.)
Tubuh tumbuhan terdiri dari organ vegetatif meliputi akar, batang, dan daun yang merupakan organ pokok tubuh tumbuhan, serta organ reproduktif yaitu organ yang bertanggung jawab bagi perbanyakan tumbuhan, pada tumbuhan berbiji meliputi bunga, buah dan biji. Pembuatan preparat dan pengamatan melalui mikroskop cahaya memberikan hasil anatomi pada bagian daun, tangkai, batang, dan akar pada tumbuhan
4.1.1 Deskripsi histologi batang
Batang merupakan bagian tubuh tumbuhan yang amat penting, disamping akar dan daun. Batang kangkung air merupakan organ pertemuan antara akar dengan daun. Batang kangkung air berwarna hijau muda dan dibatasi pada bagian luar oleh selapis jaringan epidermis. Di bawah jaringan epidermis terdapat jaringan korteks yang terdiri dari jaringan parenkim berkloroplas yang menyebabkan batang berwarna hijau dan aktif melakukan fotosintesis. Semakin menjauh dari epidermis, ukuran sel parenkhim cenderung semakin besar dan jumlah khloroplas menurun serta dinding sel semakin menipis. Jaringan parenkim tersusun rapat, berbentuk tidak beraturan, dan mengandung kloroplas yang jumlahnya lebih dari satu. Batang tumbuhan air berisi suatu sistem ruang antar sel yang meluas sehingga melalui ruang tersebut terjadi difusi gas secara bebas (Fahn 1991)
Di bawah lapisan korteks terdapat jaringan pengangkut yang tersebar dan terdiri dari xylem dan floem. Sel-sel xylem cenderung berukuran lebih besar dari sel-sel floem dan dinding selnya mengalami pertumbuhan sekunder sehingga terlihat adanya penebalan dinding sel. Di bawah mikroskop penampang terang (bright field) sel-sel xylem terlihat lebih terang daripada sel-sel floem. Bagian terdalam dari batang terdiri dari jaringan parenkim yang mengalami perubahan membentuk ruang kosong. Sel parenkim cenderung berdinding tipis dan tidak memiliki kloroplas.
Batang kangkung air berbentuk bulat dan terdapat banyak rongga udara yang berbentuk lingkaran. Irisan melintang batang tanaman kangkung air dapat dilihat pada Gambar 8.
Gambar 8 Irisan melintang batang tanaman kangkung air (A: 10x10 pewarnaan Toluidin Blue, B: 10x10 irisan preparat segar) [a : epidermis, b: parenkim sentral,
c: xylem, d: floem, e: korteks) 4.1.2 Deskripsi histologi daun (lamina)
Daun tanaman kangkung air tersusun atas jaringan epidermis, palisade, bunga karang, epidermis bawah dan jaringan pengangkut. Epidermis terdiri dari satu lapis sel. Di bawah epidermis terdapat jaringan palisade yang tersusun hingga 3 lapis sel. Sel – sel palisade cenderung berbentuk memanjang dan sebagai pusat fotosintesis mengandung kloroplas sehingga dibawah mikroskop cahaya terlihat berwarna hijau. Daun termasuk organ pokok pada tumbuhan. Pada umumnya berbentuk pipih bilateral, berwarna hijau, dan merupakan tempat utama terjadinya fotosintesis (Nugroho et al. 2006).
Di bawah lapisan palisade terdapat lapisan jaringan bunga karang yang sel-selnya berbentuk tidak beraturan dan membentuk ruang antar sel yang besar sebagai tempat pertukaran gas dan penyimpanan air. Sel–sel bunga karang mengandung kloroplas dan menunjukkan jaringan tersebut aktif dalam fotosintesis.
a b c d
A B
a b c c d e
Penampang potongan melintang daun kangkung air dapat dilihat pada Gambar 9.
Gambar 9 Anatomi daun kangkung air. (A: 10x10 dengan pewarnaan Toluidin Blue, B: 10x10 irisan preparat segar) [a: epidermis atas, b: jaringan spons, c:
epidermis bawah, d: jaringan pembuluh, e: jaringan palisade)
Jaringan epidermis daun kangkung air memiliki derivatnya berupa stomata daun. Stomata merupakan lubang atau celah yang terdapat pada epidermis organ tumbuhan yang berwarna hijau, dibatasi oleh sel khusus yang disebut sel penutup (Nugroho et al. 2006). Jenis stomata yang terdapat pada epidermis daun tanaman kangkung air berdasarkan penampakan stomata dewasa adalah jenis parasitis, yaitu stoma yang didampingi oleh satu atau lebih sel tetangga yang sejajar terhadap sumbu panjang dari celah dan sel penjaga (Dickson 2000). Penampang potongan melintang stomata daun kangkung air dapat dilihat pada Gambar 10.
Gambar 10 Penampang potongan melintang stomata daun kangkung air (10x10 irisan preparat segar)
4.1.3 Deskripsi histologis akar
Akar berperan sangat penting bagi pertumbuhan tumbuhan. Anatomi akar tanaman kangkung air terdiri atas jaringan epidermis akar (rhizodermis), korteks, pembuluh angkut, parenkim sentral. Sel-sel rhizodermis cenderung lebih kecil daripada sel – sel korteks. Rhizodermis dinding tangensial atas lebih tebal dari tangensial bawah. Secara umum sel – sel epidermis memiliki dinding samping yang lebih panjang dari dinding atas dan bawah sel. Sel epidermis akar tanaman kangkung air berdinding tipis, tidak berkutikula, terdiri dari satu lapis sel dan berbentuk tidak beraturan. Ketebalan dinding epidermis cenderung sama pada bagian atas dan bawah.
Bagian dalam epidermis terdapat korteks yang tersusun dari jaringan parenkim. Sel – sel korteks di bawah epidermis berukuran lebih kecil daripada korteks di tengah batang, kemudian ukuran sel korteks yang berdekatan dengan pembuluh angkut berubah ukurannya menjadi kecil. Pembuluh angkut tersebar dibeberapa kelompok di dekat parenkim sentral. Sel – sel xylem terlihat lebih jelas dibanding dengan floem dan parenkim sentral, yakni berdinding lebih tebal. Belum terlihat perbedaan yang nyata antara sel – sel floem, parenkim xylem dan parenkim sentral. Pada akar tidak terdapat ruang besar di daerah parenkim sentral. Irisan melintang akar kangkung air dapat dilihat pada Gambar 11.
Gambar 11 Irisan melintang akar kangkung air [a: korteks, b: rhizodermis, c: floem, d: xylem, e: parenkim sentral]
a b
c d
4.2 Karakteristik dan Morfologi Kangkung Air (Ipomoea aquatica Forsk.) Tumbuhan kangkung air (Ipomoea aquatica Forsk.) merupakan tumbuhan yang hidup di air dan biasanya disebut dengan hydrophyta. Sistem perakarannya di tanah meskipun tempat tumbuhnya adalah di perairan (Lukito 2001). Tumbuhan kangkung air dapat tumbuh dengan baik sepanjang tahun. Prasetyawati (2007) menyebutkan bahwa tangkai daun kangkung air melekat pada buku-buku batang, bentuk daunnya seperti jantung, menyerupai segitiga, memanjang, dengan pangkal yang terpancung atau bentuk panah sampai bentuk lanset. Tabel 2 merupakan hasil pengukuran daun dan batang kangkung air yang meliputi panjang dan lebar daun, serta panjang, lebar dan tebal batang.
Tabel 2 Hasil pengukuran morfologi kangkung air (Ipomoea aquatica Forsk.)
Obyek Pengukuran Hasil Pengukuran Sebaran (mm) Nilai Tengah (mm) Standar Deviasi Rentang Nilai (mm) Panjang Daun 64,26 66,75 8,70 49,00-79,05 Lebar Daun 31,27 33,00 6,01 20,00-40,00 Panjang Batang 79,80 77,13 19,28 48,00-111,00 Lebar Batang 2,40 2,45 0,68 1,00-4,00 Tebal Batang 0,61 0,50 0,26 0,10-1,00
Hasil pengukuran menunjukkan sebaran panjang daun kangkung air sebesar 64,26 mm dengan standar deviasi 8,70. Daun kangkung air memiliki kisaran panjang 49,00 sampai 79,05 mm. Sedangkan lebar daun kangkung air memiliki sebaran 31,27 mm, dengan standar deviasi 6,01. Lebar daun kangkung air berkisar antara 20,00 sampai 40,00 mm. Hasil pengukuran menunjukkan sebaran panjang batang daun kangkung air terletak pada 79,80 mm dengan standar deviasi 19,28. Panjang batang kangkung air berkisar 48,00 sampai 111,00 mm. Lebar batang kangkung air memiliki sebaran 2,40 mm pada rentang nilai 1,00 sampai 4,00 mm dengan standar deviasi 0,68.
4.3 Komposisi Kimia Tanaman Kangkung Air Segar dan Kukus
Tanaman kangkung sudah sangat dikenal masyarakat Indonesia karena tanaman ini termasuk dalam sayuran daun yang dikonsumsi sehari-hari oleh masyarakat kita. Proses pemasakan yang umumnya dilakukan terhadap komoditas
sayuran adalah pengukusan. Pengukusan adalah proses pemanasan yang bertujuan menonaktifkan enzim yang akan mengubah warna, cita rasa, maupun nilai gizi. Pengukusan dilakukan dengan suhu air lebih tinggi dari 66 ºC, tetapi kurang dari 82 ºC. Pengukusan akan mengurangi zat gizi, namun tidak sebesar pada proses perebusan (Romdhijati 2010).
Kandungan gizi yang terdapat dalam tanaman kangkung air dapat diketahui dengan cara analisis proksimat terhadap bagian tanaman yang dikonsumsi, yaitu bagian daun dan batang. Karakter kimia yang dianalisis adalah kadar air, kadar abu, lemak, protein, karbohidrat dan serat kasar. Komposisi kimia daun dan batang kangkung air segar dan hasil pengukusan dapat dilihat pada Tabel 3 dan histogram pada Gambar 12.
Tabel 3 Komposisi proksimat daun dan batang kangkung air
Jenis gizi kangkung air segar (%) kangkung air kukus (%)
Daun Batang Daun Batang
Air 85,64 85,04 82,75 83,27
Abu 0,54 0,56 0,30 0,43
Lemak 0,21 0,19 0,18 0,17
Protein 3,10 3,23 4,04 4,13
Serat kasar 1,16 1,17 1,06 1,00
Gambar 12 Histogram komposisi proksimat daun dan batang kangkung air 4.3.1 Kadar Air
Kadar air merupakan kandungan air yang terdapat dalam bahan makanan dengan derajat keterikatan berbeda-beda dalam bahan (Winarno 2008). Air dalam
tubuh berfungsi sebagai pelarut dan alat angkut zat-zat gizi, terutama vitamin larut air dan mineral. Selain itu, air juga berfungsi sebagai katalisator, pelumas, fasilitator pertumbuhan, pengatur suhu, dan peredam benturan. Kandungan air yang tinggi menyebabkan buah dan sayuran mudah mengalami kerusakan (perishable). Hal ini karena air merupakan media yang cocok untuk pertumbuhan mikroorganisme penyebab kebusukan (Wirakusumah 2007). Kadar air dalam bahan pangan ikut menentukan kesegaran dan daya awet bahan pangan tersebut (Winarno 1997).
Air yang terkandung di dalam jaringan tanaman umumnya berkisar 80 % hingga 90 % berat segar dari tanaman basah dan kurang dari 20 % dari tanaman kering (Fennema 1996). Tanaman kangkung air memiliki kandungan air yang tinggi. Kadar air tanaman kangkung air di bagian daun adalah 85,64 % sedangkan pada bagian batang sebesar 85,04 %. Kadar air tanaman kangkung air lebih tinggi dibandingkan dengan Amaranthus aquatica (bayam) sebesar 84,47 % Gladys (2011) dan tanaman genjer yang berasal dari malaysia sebesar 80 %. Bujang et al. (2009). Kandungan air yang tinggi disebabkan oleh tanaman masih dalam keadaan segar dan memiliki habitat yang banyak mengandung air.
Proses pengukusan menyebabkan kandungan air dari tanaman kangkung air menurun, yakni bagian daun sebesar 82,75 % dan bagian batang 83,27 %. Hasil analisis kadar air tanaman kangkung air segar dan kukus disajikan pada Gambar 13.
Proses pengukusan menyebabkan kadar air tanaman kangkung air baik di bagian daun maupun batang menurun. Pengukusan merupakan proses pemanasan dengan suhu air 66-82 ºC (Romdhijati 2010). Kadar air tanaman dipengaruhi oleh habitat dan struktur jaringan yang dimilikinya. Kangkung air tumbuh di tanah berair dan pada batang serta daunnya mengandung banyak rongga yang dapat digunakan sebagai tempat menyimpan air dan udara / gas. Kadar air juga dipengaruhi oleh kesegaran sampel. Pada kangkung air, karena struktur jaringan daun dan batang banyak mengandung rongga, maka kadar airnya akan cepat berubah dari waktu ke waktu, yang berarti kesegaran akan mempengaruhi kadar airnya. Semakin hilang kesegaran kangkung air, maka akan semakin menurun pula kadar airnya. Menurut Fennema (1996), pengaruh dari hilangnya air pada tanaman adalah tanaman menjadi layu dan kehilangan berat serta secara tidak langsung menimbulkan perubahan yang diinginkan ataupun yang tidak dinginkan.
Penurunan kadar air setelah pengukusan dapat disebabkan oleh adanya proses pemanasan selama pengukusan yang mengakibatkan sejumlah air dalam bahan, yaitu air terikat tipe 1, tipe 3 maupun tipe 4, mudah menguap. Pemasakan ini juga memacu pelunakan jaringan tanaman atau tanaman menjadi layu sehingga tanaman kangkung air dapat dikonsumsi. Menurut Hamuzu et al. (2004) sebagian besar sayuran yang dimasak dengan cara pengukusan atau dipanaskan dalam microwave, akan mengalami perubahan karakteristik fisik dan perubahan komposisi kimia. Menurunnya kadar air pada sayuran akan mengakibatkan perubahan tekstur pada sayuran tersebut. Sayuran setelah dikukus akan menjadi renyah dan lebih mudah dikonsumsi (Azizah et al. 2009).
4.3.2 Kadar abu
Kadar abu merupakan salah satu analisa proksimat yang menunjukkan kandungan mineral dari jaringan tanaman maupun hewan setelah pembakaran. Mineral dibagi menjadi elemen utama, trace element, dan ultra-trace element (Belitz et al. 2009). Kadar abu dari suatu bahan pangan menunjukkan residu bahan anorganik yang tersisa setelah bahan organik dalam makanan didestruksi. Kadar abu mempunyai hubungan dengan jumlah kandungan mineral dari suatu bahan pangan. Menurut Winarno (1997) sebagian bahan makanan, yaitu sekitar 96% terdiri dari bahan organik dan air. Sisanya terdiri dari unsur-unsur mineral
yang juga dikenal sebagai zat anorganik atau kadar abu. Dalam proses pembakaran, bahan-bahan organik terbakar tetapi zat anorganiknya tidak. Hasil analisis kadar abu tanaman kangkung air segar dan kukus disajikan pada Gambar 14.
Gambar 14 Histogram kadar abu
Hasil analisis menunjukan kadar abu pada daun dan batang tanaman kangkung air segar berkisar 0,54 % dan 0,56 % sedangkan kadar abu pada daun dan batang tanaman kangkung air setelah pengukusan 0,30 % dan 0,43 %. Terlihat bahwa terdapat penurunan kadar abu setelah tanaman kangkung air mengalami pengukusan. Nilai tersebut lebih rendah dibandingkan dengan semanggi air yang memiliki kadar abu 2,7 % (Arifin 2009), bayam 1,5% dan kubis 0,6% (Winarno 1997) serta tanaman genjer yang memiliki kadar abu pada daun dan batang masing-masing 1,41 % dan 1,30 % (Wisnu 2012). Darmono (1995) menjelaskan bahwa masing-masing organisme memiliki kemampuan yang berbeda-beda dalam meregulasikan dan mengabsorpsi logam, hal ini nantinya akan mempengaruhi kadar abu pada bahan.
Boskow & Elmadfa (1999) memaparkan bahwa kadar abu dapat menurun kandungannya karena adanya air yang keluar akibat proses pengukusan. Mineral- mineral yang terkandung dalam tanaman kangkung air misal kalsium, fosfor, besi, natrium, kalium, tembaga, dan seng ikut keluar bersama dengan keluarnya air
akibat proses pengukusan. Penurunan kadar abu diakibatkan adanya proses pemasakan yang dapat mengubah karakteristik serta kandungan mineral yang terdapat pada bahan. Menguapnya air akibat proses pengukusan menyebabkan kandungan mineral yang terdapat pada bahan menjadi berkurang sehingga menurunkan nilai kadar abu.
Mineral dalam abu merupakan bentuk metal oksida, sulfida, fosfat, nitrat,