• Tidak ada hasil yang ditemukan

PROTEIN REKOMBINAN SEBAGAI MODEL IMUNOGEN UNTUK MENGHASILKAN

PEMBAHASAN UMUM

Beberapa hasil penelitian bioteknologi peternakan saat ini sudah dapat diaplikasikan dan dimanfaatkan untuk peningkatan reproduksi ternak, pakan ternak serta untuk memperbaiki status kesehatan hewan. Selanjutnya dijelaskan, bahwa bioteknologi reproduksi meliputi inseminasi buatan (Generasi ke I), embryo transfer (Generasi ke II) dan pemuliabiakan ternak melalui kloning (Generasi ke III), dalam upaya peningkatan reproduksi ternak telah dikembangkan penelitian dan aplikasi bioteknologi sampai dengan generasi keempat, yaitu hewan transgenik. Bioteknologi di bidang pakan merupakan teknologi biokimia dan mikrobiologi yang telah diaplikasikan untuk perbaikan mutu pakan, seperti manipulasi mikroba rumen maupun dengan perlakuan kimiawi dan mikrobiologi. Hal ini dimaksudkan untuk meningkatkan daya cerna dari hijauan pakan ternak, jerami dan limbah pertanian yang tinggi kadar selulosanya. Bioteknologi kesehatan hewan meliputi: (1) Produksi komersial berbagai macam zat penggertak pertumbuhan (growth promotors), seperti produksi hormone dengan DNA rekombinan memanfaatkan bakteri tertentu. (2) Produksi komersial substansi antigenik untuk memproduksi vaksin dengan DNA rekombinan yang relatif lebih baik dan lebih aman dibandingkan dengan antigen konvensional yang berasal dari bakteri atau mikroorganisme patogen yang lain. Selanjutnya Muladno (2002) menjelaskan, bahwa dengan tersedianya bioteknologi rekayasa genetika yang dilahirkan pada tahun 1973, manusia telah dapat mengisolasi gen (molekul DNA) serta memanipulasinya, kemudian memindahkan gen tersebut dari satu organisme ke organisme lain.

Teknologi kloning merupakan terobosan baru di bidang rekayasa genetika. Menurut Winarno dan Agustinah (2007), kloning adalah pengembangbiakan suatu mahluk hidup yang persis sama dengan induknya tanpa melalui pembuahan, seperti stek pada tanaman, tetapi kloning melalui rekayasa genetika adalah jauh lebih rumit. Muladno (2002) menjelaskan, bahwa pada prinsipnya kloning DNA adalah proses penggandaan jumlah DNA rekombinan melalui proses perkembangbiakan sel bakteri. Proses penggandaan tersebut dilakukan dengan memasukkan DNA rekombinan ke dalam E.coli, diikuti dengan inkubasi sel E.coli

pada suhu optimal sehingga sel berkembangbiak secara eksponensial. Selanjutnya dijelaskan pula, bahwa menggandakan jumlah molekul DNA tidak hanya dapat dilakukan dengan memanfaatkan mekanisme kehidupan mikroorganisma, tetapi dapat juga dilakukan melalui teknik PCR (Polymerase Chain Reaction).

Teknologi DNA rekombinan yang memungkinkan digunakan untuk menghasilkan protein rekombinan pada bakteri sangat penting untuk mengatasi permasalahan tersebut. Produksi vaksin dengan menggunakan bakteri akan dapat memenuhi permintaan vaksin yang semakin tinggi dengan waktu yang relatif singkat serta biaya yang relatif lebih murah. Selain itu, teknologi DNA rekombinan dan teknologi produksi pada bakteri memungkinkan dilakukan berbagai upaya rekayasa epitop dalam rangka meningkatkan kualitas vaksin yang akan dihasilkan.

Escherichia coli merupakan bakteri yang menjadi pilihan utama diantara aneka bakteri yang telah digunakan sebagai inang dalam menghasilkan protein rekombinan, baik di bidang riset maupun industri. Hal ini disebabkan bakteri Escherichia coli membutuhkan biaya media yang relatif murah, cepat berkembang biak, serta teknologinya sudah berkembang luas (Hu et al. 2004; Kristensen et al. 2005; Lombardi et al. 2005). Berbagai protein rekombinan dari bakteri, archaeabacteria, maupun dari eukariotik dapat diproduksi secara efisien pada E. coli (Kristensen et al. 2005).

Biosintesis antigen HBsAg100-GST telah dilakukan dalam penelitian ini dengan menggunakan Escherichia coli sebagai inang. Selain itu, gen penyandi antigen permukaan hepatitis B tersebut digabung (fusi) dengan gen penyandi enzim gluthation-S-transferase (GST) untuk meningkatkan ekspresi maupun kelarutan antigen untuk aktifitas maupun proses pemurnian. Antigen ini diharapkan dapat menghasilkan kandidat vaksin rekombinan hepatitis B yang sesuai dengan genetik virus lokal di Indonesia, dan antibodi yang dihasilkan juga diharapkan akan lebih efektif dalam melakukan proteksi terhadap virus hepatitis B lokal.

Campuran yang berhasil digunakan untuk mendapatkan hasil PCR yang optimal adalah 0,1 unit enzim DNA polymerase pyrobest (Takara Bioinc., Otsu, Japan) dengan bufernya; 0,5 M primer forward (f) dan backward (b); 0,2 mM

dNTP; 1 ng/ml plasmid pGEMT-HB sebagai cetakan. Penggunaan DNA dengan konsentrasi kurang dari 1 ng/ml menghasilkan pita gen target yang kurang jelas, dan penggunaan DNA melebihi 1 ng/ml menyebabkan munculnya beberapa pita produk PCR yang tidak sesuai dengan ukuran pita target. Program PCR yang berhasil digunakan adalah 94oC selama 5 menit, 25 siklus pada 94oC selama 30 detik, 54oC selama 30 detik dan 72oC selama 30 detik, diakhiri dengan 72oC selama 5 menit dan 20oC sampai sampel diangkat untuk elektroforesis. Penemuan suhu annealing yang ideal (54oC ), setelah dilakukan PCR menggunakan beberapa suhu annealing mulai dari 50oC, 52oC, 54oC dan 56oC. Pita gen target yang paling tampak jelas diperoleh pada suhu annealing 54oC.

Ketepatan suhu dan waktu annealing, konsentrasi DNA dan primer, serta konsentrasi enzim polimerase DNA yang digunakan sangat menentukan keberhasilan amplifikasi. Penggunaan suhu annealing 54oC selama 30 detik telah menyebabkan primer-primer yang digunakan dapat menempel pada daerah spesifik dari DNA cetakan. Selain itu, waktu yang diperlukan untuk tahap extention adalah selama 30 detik pada suhu 72oC, karena enzim polymerase Pyrobest yang dipergunakan memerlukan waktu 1 menit per 1 kilo pasang basa. Berbeda dengan enzim polymerase Ex Taq yang biasanya memiliki kemampuan lebih cepat, yaitu 40 detik per 1 kilo pasang basa. Hal ini dikarenakan enzim polymerase Pyrobest merupakan enzim dengan tingkat kecermatan tinggi (high fidelity) yang memiliki kemampuan proof-reading.

Produk PCR selanjutnya perlu dimurnikan karena ada kelebihan primer-primer maupun substrat dan enzim yang digunakan pada campuran PCR dengan teknik pemotongan gel menggunakan DNA Gel extraction kit. Hasil pemurnian digunakan pada tahap ligasi dengan plasmid pGEX-4T-2 yang telah dipotong dengan enzim Sma1. Enzim Pyrobest yang digunakan untuk proses amplifikasi di atas termasuk enzim dengan tingkat kecermatan tinggi (high fidelity).

Campuran reaksi dari reaksi ligasi tersebut adalah produk PCR yang telah diphosphorilasi 2 l, 25 ng/ l plasmid pGEX-4T-2 yang telah diphosphorilasi, 1 l kit ligasi, kemudian diinkubasi pada suhu 12oC selama 18 jam. Selanjutnya, dilakukan transformasi dengan E. coli DH5, kemudian ditumbuhkan pada media LB yang mengandung ampisilin pada suhu 37oC selama 14 jam. Koloni bakteri

yang tumbuh diduga memiliki plasmid rekombinan. Skrining koloni pembawa plasmid rekombinan dengan teknik PCR koloni dilakukan untuk memastikan hal tersebut.

Introduksi plasmid pGEX-SR100 ke dalam bakteri inang E. coli DH5α (transformasi) berhasil dilakukan dengan teknik heat shock. Koloni bakteri E. coli DH5α pembawa plasmid rekombinan pGEX-SR100 hasil transformasi ditumbuhkan pada media seleksi (ampisilin 50 µl/ml) yang mengandung X-gal dan IPTG. Hasil kultur dari bakteri tersebut dapat dilihat pada Gambar 7. Koloni bakteri yang berwarna putih diduga pembawa plasmid rekombinan pGEX-SR100, sebaliknya koloni bakteri berwarna biru tidak membawa plasmid rekombinan.

Penelitian ini telah menguji ekpresi plasmid rekombinan dengan menggunakan E. coli DH5α serta E. coli BL21. E. coli DH5α merupakan bakteri inang yang umum dipergunakan untuk tujuan kloning dan memperbanyak plasmid, sedangkan E. coli BL21 merupakan inang yang umum digunakan untuk tujuan ekspresi. Perbedaan kedua strain bakteri E. coli tersebut adalah E. coli DH5α memiliki banyak enzim protease baik di periplasma maupun sitoplasma, yang dapat mendegradasi protein rekombinan yang dihasilkan pada bakteri tersebut. Gen-gen penyandi enzim protease pada E. coli BL21 sudah dimutasi sehingga ekspresi protein rekombinan tidak akan mengalami degradasi yang intensif. Hal ini terlihat pada hasil SDS-PAGE pada Gambar 11 yang menunjukkan hal tersebut, yaitu intensitas pita protein rekombinan ketika menggunakan E. coli BL21 sebagai inang lebih tebal dibandingkan dengan ketika menggunakan E. coli DH5α. Tebalnya pita protein target masih terlihat walaupun dilakukan pengenceran sampai 10x, sedangkan pengenceran 10 x pada protein yang diekspresi pada E. coli DH5α sudah tidak terlihat.

Secara umum terlihat intensitas pita protein cukup tinggi, walaupun jumlah ekspresi protein rekombinan pada E. coli BL21 lebih tinggi dibandingkan pada E. coli DH5α. Hal ini disebabkan antara lain oleh fusi dengan GST. Maeng et al. (2001) melakukan ekspresi gen virus hepatitis B secara parsial diikuti dengan penggabungan atau fusi gen dengan gen penyandi enzim GST untuk peningkatan ekspresi dan kelarutan antigen permukaan hepatitis B pre-S2 pada E. coli.

Hasilnya menunjukkan terjadi peningkatan tingkat ekspresi antigen pre-S1 yang digabung dengan GST.

Berbagai macam affinity tag, seperti GST dan polyhistidin, dapat digunakan untuk meningkatkan ekspresi dan memfasilitasi pemurnian antigen rekombinan. Hasil pemurnian fusi HBsAg100 dan GST dalam penelitian ini menunjukkan bahwa antigen rekombinan yang diperoleh setelah pemurnian relatif murni dan dalam jumlah yang cukup untuk dapat digunakan dalam aplikasi (assay) selanjutnya (Gambar 15 pita nomor 5-7). Keberhasilan isolasi ini tidak terlepas dari sifat meningkatnya kelarutan protein rekombinan karena fusi dengan GST. Hal ini sesuai dengan pendapat Koschorreck et al. (2005) yang melaporkan terjadi peningkatan solubilitas protein rekombinan yang digabung dengan GST.

Simpulan

Berdasarkan hasil penelitian ini dapat disimpulkan bahwa gen SR100 berhasil diamplifikasi, kemudian diligasi dengan vektor pGEX-4T-2, dan ditransformasikan ke dalam bakteri E. coli DH5α. Hasil sekuensing menunjukkan tidak terdapat mutasi pada gen hasil kloning. Plasmid pGEX-SR100 berhasil diekspresikan baik pada bakteri E. coli BL21 maupun E. coli DH5α. Ekspresi pada bakteri E. coli BL21 menghasilkan protein rekombinan lebih tinggi. Protein rekombinan HBsAg100-GST yang telah diekspresikan oleh E. coli tersebut berhasil dipurifikasi.

Saran

Penelitian dengan teknologi DNA rekombinan perlu digali dan dikembangkan terus dalam rangka pengembangan usaha industri peternakan khususnya di bidang penyediaan bahan vaksin. Pemanfaatan E. coli sebagai inang produksi protein rekombinan lebih tepat menggunakan E. coli BL21.

Ali M et al. 2005. Improvements in the cell-free production of functional antibodies using cell extract from protease-deficient Escherichia coli. J Biosci Bioengin 99:181-186.

Ali M. 2006. High-throughput monoclonal antibody production using cell-free protein synthesis system [Ph.D thesis]. Nagoya University, Japan.

Andre, S. 2006. File: DNA Overview.png. Wikimedia Commons. Retrieved on January 17, 2009 from http://en.wikipedia.org/wiki/File:DNA_Overview.png [9 Februari 2012].

Anzola M. 2004. Hepatocellular carcinoma: Role of hepatitis B and hepatitis C viruses proteins in hepatocarcinogenesis. J Viral Hepat 11(5):383-393.

Barnum SR. 2005. Biotechnology an Introduction. International Student Edition. Ed ke-2. Belmont: Thmpson Brooks/Cole.

Barrera A, Guerra B, Notvall L, Landford RE. 2005. Mapping of the Hepatitis B virus Pre-S1 domain involved in receptor recognition. J Virol 79:9786-9798. Beck J, Nassal M. 2007. Hepatitis B virus replication. World J Gastroenterol

13(1):48-64.

Burda MR, Gunther S, Dandri M, Will H, Petersen J. 2001. Structural and functional heterogeneity of naturally occuring hepatitis B virus variants. Antiviral Res 52:125-138.

Camargo, I.F., A.M.C. Gaspar, and C.F.T. Yoshida. 1987. Comparative ELISA Reagents for Detection of Hepatitis B Surface Antigens (HBsAg). Mem Inst Oswaldo Cruz 82(2):181-187.

Chen X, Li M, Le X, Ma W, Zhou B. 2004. Recombinant hepatitis B core antigen carrying preS1 epitopes induce immune response against chronic HBV infection. Vaccine Word J Gastroenterol 22:439-446.

Dayal M, Maldonado D. 1998. The Hepadna Virus Family. An Exclusive Interview with Baruch Blumberg, Winner of the 1976 Nobel Prize in Medicine. http://www.stanford.edu/group/virus/hepadna/Blumberg.html. [1 Februari 1998].

Ddemann AP, Zyl WH. 2003. Evaluation of Aspergillus niger as host for virus-like particle production, using the Hepatitis B surface antigen as a model. Springer-Verlag. Word J Gastroenterol 12:244-247

Deng Q, Kong YY, Xie YH, Wang Y. 2005. Expression and purification of the complete PreS region of Hepatitis B virus. World J Gastroenterol 11:3060-3064.

Dryden KA et al. 2006. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Molecul Cell 22:843-850.

GenBank. 2008. Hepatitis B Virus Isolate 2059Java, Complete Genome. GenBank: EF473971.1

Glick BR, Pasternak JJ. 1994. Molecular Biotechnology. Principles and Applications of Recombinant DNA. Washington DC: ASM Press.

Hu H et al. 2004a. Yeast expression and DNA immunization of Hepatitis B virus gene with second-loop deletion of α determinant region. Word J Gastroenterol 10:2989-2993.

Hu WG. Et al. 2004b. Expression of overlapping Pre-S1 Fragment Recombinant Proteins for the determination of immunogenic domains in HBsAg PreS1 region. Acta Biochim Biophys Sin 36(6): 397-404.

Jaoude AG., Sureau C. 2005. Role of the antigenic loop of the Hepatitis B virus envelope proteins in infectivity of Hepatitis B delta virus. J Virol 79:10460-10466.

Ji D et al. 2005. Study of transactivating effect of pre-S2 protein of Hepatitis B virus and cloning of genes transactivated by pre-S2 protein with suppression subtractive hybridization. World J Gastroenterol 11:5438-5443.

Joshi N, Kumar A. 2001. Immunoprophylaxis of Hepatitis B virus infection. Indian J Med Microbiol 19:172-183.

Joung YH et al. 2004. Expression of the Hepatitis B surface S and preS2 antigens in tubulers of Solanum tuberosum. Plant Cell Rep 22:925-930.

Kim SJ et al. 2003. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES. Virology 314:84-91.

Kimura T et al. 2005. Hepatitis B virus DNA-negative Dane particles lack core protein but contain a 22-kDa precore protein without C-terminal arginine-rich domain. J Biol Biochem 280:21713-21719.

Koschorreck M, Fischer M, Barth S, Pleiss J. 2005. How to find soluble proteins: a comprehensive analysis of alfa/beta hydrolases for recombinant expression in E. coli. BMC Genom 6:1-10.

Kristensen J, Petersen HUS, Mortensen KK, Sorensen HP. 2005. Generation of monoclonal antibodies for the assesment of protein purification by recombinant ribosomal coupling. Int. J Biol Macromol 37:212-217.

Kumar SGB, Ganapathi TR, Revathi, Srinivas VA. Bapat. 2005. Expression of Hepatitis B surface antigen in transgenic banana plants. Planta 222: 484-493. Lewin B. 1990. Genes IV. Cell Press, Cambridge, Mass. Oxford University Press,

Walton Street, Oxford OX2 6DP.

Lippi G, Salvagno GL, Montagnana M, Guidi GC. 2007. Preparation of a quality sample: Effect of centrifugation time on stat clinical chemistry testing. Lab Med 38(3): 172-176.

Locarnini SA, Coulepis AG, Stratton AM, Kaldor J, Gust ID. 1979. Solid-phase enzyme-linked immunosorbent assay for detection of hepatitis A specific immunoglobulin M. J Clinic Microbiol 9:459-465.

Lombardi A, Sperandei M, Cantale C, Giacomini P, Galeffi P. 2005. Functional expression of a single-chain antibody specific or the HER2 human oncogene in a bacterial reducing environment. Protein Expr Purif 44:10-15.

Lu YY et al. 2002. Cloning and expression of the preS1 gene of Hepatitis B virus in yeast cells. Hepatobiliar Pancreat Dis Int 1:238-242.

Maeng CY, Oh MS, Park IH, Hong HJ. 2001. Purification and structural analysis of the Hepatitis B virus preS1 expressed from Escherichia coli. Biochem Biophys Res Com 282:787-792.

Maruyama J et al. 2000. Production and product quality assessment of human Hepatitis B virus pre-S2 antigen in submerged and solid-state culture of Aspergillus oryzae. J Biosci Bioengineer 90:118-120.

Mason AL, Xu L, Guo L, Kuhns M, Perrillo RP. 1998. Molecular basis for persistent hepatitis B virus infection in the liver after clearance of serum hepatitis B surface antigen. Hepatology 27(6):1736-1742.

Milich DR, Roels GGL. 2003. Immunogenetics of the response to HBsAg vaccination. Autoimmun Rev 2:248-257.

Muladno. 2002. Teknonologi Rekayasa Genetika. Bogor Baru: Pustaka Wirausaha Muda. Bogor.

Muljono DH, Soemohardjo S. 2003. Hepatitis B Virus Molecular Diversity in Indonesia. Di dalam: Marzuki S, Verhoef J, Snippe H, editor. Tropical Deseases: From Molecule to Bedside.. London: Kluwer Academic/Plenum Publisher. Hlm 163-176.

Mulyanto et al. 1997. Distribution of the Hepatitis B surface HBsAg100 subtypes in Indonesia: Implications for ethic heterogeneity and infection control measures. Arch Virol 142:2121-2129.

Mulyanto et al. 2002. Hepatitis B seroprevalence among children in Mataram, Indonesia: following a seven-year mass immunization program. Report meeting of the US-Japan cooperative medical science program asian region collaboration research project 2001, Sanghai.

Nurainy N, Muljono DH, Sudoyo H, Marzuki S. 2008. Genetic study of hepatitis B virus in Indonesia reveals a new subgenotype of genotype B in East Nusa Tenggara. J Arch Virol 153(6): 1057-1065.

Old RW, Primrose SB. 1989. Prinsip-prinsip Manipulasi Gen Pengantar Rekayasa genetika. Edisi ke-4. Direktorat Jenderal Pendidikan Tinggi. Departemen Pendidikan dan Kebudayaan, penerjemah; Jakarta: UIP. Terjemahan dari: Principles of Gen Manipulation.

Plotkin SA. 2005. Six revolution in vaccinology. Pediatric Infect Dis J 24:1-9. Richter LJ, Thanavala Y, Arntzen CJ, Mason HS. 2000. Production of hepatitis B

surface antigen in transgenic plants for oral immunization. Nature 18:1167-1171.

Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

Sheu SY, Lo SJ. 1995. Deletion or alteration of hidrofobik amino acids at the first and third transmembrane domains of Hepatitis B surface antigen enhances its production in Escherichia coli. Gene 160:179-184.

Stannard LM. 1995. Hepatitis B Virus. http://web.uct.ac.za/depts/mmi/stannard/ emimages. html.

Soewignjo S, Mulyanto. 1984. Epidemiologi infeksi virus Hepatitis B di Indonesia. Acta Medica Indones 15:215-230.

Thanavala Y. 1995. Novel approaches to development against HBV. J Biotechnol 44:67-73.

Tizard IR. 1988. Pengantar Imunologi Veteriner. Airlangga University Press. Surabaya

Vikis HG, Guan KL. 2000. Glutathione-S-Transferase-Fusion Based Assays for Studying Protein-Protein Interaction. Di dalam: Methods in Molecular Biology, vol. 261. Humana Press Inc. Totowa, NJ.

Wagner A, Denis F, Roges SR, Ratti VL, Alain S. 2004. Hepatitis B Virus Genotypes. Immuno-anal Biol Special 19:330-342.

Winarno FG. 2004. Keamanan Pangan. Jilid 3, Cetakan 1. Bogor: M-Brio Press. Winarno FG, Agustinah W. 2007. Pengantar Bioteknologi. Ed Revisi. Bogor:

M-Brio Press.

Wiryosuhanto SD, Sudradjat SD, editor. 1992. Aplikasi Bioteknologi Kesehatan Hewan. Hasil Semiloka Bioteknologi Kesehatan Hewan di Bogor, 20-21 Oktober 1992. Direktorat Jenderal Peternakan Departemen Pertanian. Jakarta. Worman HJ. 2002. Hepatitis B. Columbia University Medical Center. Deseases of

the Liver/Howard J. Worman, M.D./hjw14@columbia.edu

Yamada T et al. 2001. Physicochemical and immunological characterization of Hepatitis B virus envelope particles exclusively consisting of the entire L (pre-S1+pre-S2+S) protein. Vaccine. J Virol 19:3154-3163.

Yamamoto H, Satoh T, Kiyohara T, Totsuka A, Moritsugu Y. 1997. Quantitation of group-specific a antigen in Hepatitis B vaccines by anti-HBs/a monoclonal antibody. Biologicals 25:373-380.

Lampiran 1 Topologi dan peta fisik plasmid pGEM-T Easy

Sumber:

Diakses pada tanggal 13 Februari 2012 melalui:

http://www.promega.com/~/media/Files/Resources/Protocols/Technical%20Manu

Lampiran 2 (lanjutan)

Diterima melalui email dari Fak. Kedokteran UNRAM pada tanggal 2 April 2009

Lampiran 4 Topologi dan peta fisik plasmid pGEX-4T-2

Lampiran 5 (lanjutan)

Diakses pada tanggal 12 Juni 2011 melalui:

http://www.gelifesciences.com/aptrix/upp00919.nsf/Content/2CA907CE4753D32 BC1257628001D394F/$file/28918445AB.pdf

Lampiran 6 Hasil sekuensing gen SR100 dengan menggunakan primer pGEX-5’

Lampiran 6 (lanjutan)

Lampiran 7 Hasil sekuensing gen SR100 dengan menggunakan primer pGEX-3’

Lampiran 7(lanjutan)

Lampiran 8 Mesin Thermal Cycler untuk mengamplifikasi segmen DNA

Lampiran 10 Alat elektroforesis (BIO-RAD) untuk memisahkan molekul protein berdasarkan berat molekulnya (tampak depan)

Lampiran 11 Alat elektroforesis (BIO-RAD) untuk memisahkan molekul protein berdasarkan berat molekulya (tampak atas)

Lampiran 12 Kelompok kandang mencit dalam penelitian

Lampiran 14 Proses mencampur HBsAg100-GST dengan Freund’s Adjuvant sebagai bahan vaksin

Lampiran 16 Proses vaksinasi terhadap mencit sedang berlangsung

Lampiran 18 Hasil elisa dalam penentuan konsentrasi serum mencit untuk menguji antigenisitas protein rekombinan HBsAg100-GST

Lampiran 20 Printer yang terhubung dengan Mesin Elisa

Lampiran 21 Data hasil pembacaan optikal densiti (OD) terhadap serum mencit yang diperoleh dari darah mencit sebelum dan setelah dilakukan vaksinasi HBsAg100-GST (kelompok A) dan GST (kelompok B)

SLAMET RIYADI. Production of HBsAg100-GST Recombinant Protein as an Immunogen Model for Generating Antibody in Mice. Under direction of RARAH R.A. MAHESWARI, MIRNAWATI SUDARWANTO, FRANSISKA R. ZAKARIA, and MUHAMAD ALI.

Since years ago, a new paradigm of vaccine design is emerging. Instead of attenuated virulent microorganisms or killed virulent microorganisms, effective subunit vaccines were developed using recombinant DNA technology. Biosynthesis of recombinant protein in Escherichia coli may offer an alternative procedure to generate therapeutic protein free from human protein. In this research, hydrophilic domain of S protein (aa 100-164)-encoding gene of hepatitis B surface antigen was cloned for vaccine candidate production. The gene was ligated with pGEX-4T-2 vector and sequenced. Sequences alignment of the amplified fragment with genome of hepatitis B virus indicated that the sequences were identical. In this research, cloned DNA fragment of Hepatitis B surface antigen was placed downstream from the gluthatione S-transferase (GST) protein-encoding gene in expression plasmid pGEX-4T-2 and expressed in Escherichia coli cells. A polypeptide of 34.8 kDa molecular weight was synthesized and identified as HBsAg100-GST fusion proteins. The recombinant proteins were then purified using GSTrap and HiTrap column and could be used for vaccine candidate or for antibody generation. The purified protein was tried to trigger cell immune to produce antibody in mice. Results indicated that the immunogenicity of GST was higher than GST protein in elicit the levels of HBsAg100-specific IgG antibody in mice. These results suggest that the HBsAg100 produced in E. coli has immunogenicity. A major result achieved from this research was clones carrying S antigens-encoding gene that could be used further for production of recombinant hepatitis B vaccine candidates.

SLAMET RIYADI. Produksi Protein Rekombinan HBsAg100-GST sebagai Model Imunogen untuk Menghasilkan Antibodi pada Mencit. Dibimbing oleh RARAH R.A. MAHESWARI, MIRNAWATI SUDARWANTO, FRANSISKA R. ZAKARIA, dan MUHAMAD ALI.

Kemajuan teknologi molekuler dalam beberapa dekade terakhir, terutama sejak ditemukannya sekuen genom lengkap dari mikroba-mikroba patogen, telah menemukan jalan baru bagi dihasilkannya berbagai jenis protein rekombinan, baik vaksin, antibodi, maupun peptide sintetik yang memiliki manfaat tertentu. Pada

Dokumen terkait