• Tidak ada hasil yang ditemukan

TINJAUAN PUSTAKA 2.1Proses Pengeringan

2.2 Pengeringan Buatan

Pengeringan dengan menggunakan alat pengering dimana, suhu, kelembapan udara, kecepatan udara dan waktu dapat diatur dan di awasi.

Keuntungan Pengering Buatan:

 Tidak tergantung cuaca

 Tidak memerlukan tempat yang luas

 Kondisi pengeringan dapat dikontrol

 Pekerjaan lebih mudah.

2.2.1 Jenis - Jenis Pengeringan Buatan

Berdasarkan media panasnya,

 Pengeringan adiabatis ; pengeringan dimana panas dibawa ke alat pengering oleh udara panas, fungsi udara memberi panas dan membawa air.

 Pengeringan isotermik; bahan yang dikeringkan berhubungan langsung dengan alat atau plat logam yang panas.

2.2.2 Proses pengeringan:

 Proses pengeringan diperoleh dengan cara penguapan air

 Dengan cara menurunkan RH dengan mengalirkan udara panas disekeliling bahan

 Proses perpindahan panas; proses pemanasan dan terjadi panas sensible dari medium pemanas ke bahan, dari permukaan bahan kepusat bahan.

 Proses perpindahan massa ; proses pengeringan (penguapan), terjadi panas laten, dari permukaan bahan ke udara

 Panas sensible ; panas yang dibutuhkan /dilepaskan untuk menaikkan /menurunkan suhu suatu benda

 Panas laten ; panas yang diperlukan untuk mengubah wujud zat dari padat kecair, cair ke gas, dan seterusnya, tanpa mengubah suhu benda tersebut.

2.2.3 Faktor faktor yang mempengaruhi pengeringan.

Pada pengeringan selalu di inginkan kecepatan pengeringan yang maksimal. Oleh karena itu perlu dilakukan usaha- usaha untuk memercepat pindah panas dan pindah massa (pindah massa dalam hal ini adalah perpindahan air keluar dari bahan yang dikeringkan dalam proses pengeringan tersebut).

Ada beberapa faktor yang perlu diperhatikan untuk memperoleh kecepatan pengeringan maksimum, yaitu :

(a) Luas permukaan

(b) Suhu

(d) Kelembaban udara

(e) Waktu.

Dalam proses pengeringan ini faktor yang perlu diperhatikan untuk memperoleh kecepatan pengeringan maksimum adalah :

Suhu

Semakin besar perbedaan suhu (antara medium pemanas dengan bahan bahan) maka akan semakin cepat proses pindah panas berlangsung sehingga mengakibatkan proses penguapan semakin cepat pula. Atau semakin tinggi suhu udara pengeringan maka akan semakin besar anergi panas yang dibawa ke udara yang akan menyebabkan proses pindahan panas semakin cepat sehingga pindah massa akan berlangsung juga dengan cepat.

Kecepatan udara

Umumnya udara yang bergerak akan lebih banyak mengambil uap air dari permukaan bahan yang dikeringkan. Udara yang bergerak adalah udara yang mempunyai kecepatan gerak yang tinggi yang berguna untuk

mengambil uap air dan menghilangkan uapa air dari permukaan bahan yang dikeringkan, sehingga dapat mencegah terjadinya udara jenuh yang dapat memperlambat penghilangan air.

Kelembaban Udara (RH)

Semakin lembab udara di dalam ruang pengering dan sekitarnya maka akan semakin lama proses pengeringan berlangsung kering, begitu juga

sebaliknya. Karena udara kering dapat mengabsorbsi dan menahan uap air. Setiap bahan mempunyai keseimbangan kelembaban (RH keseimbangan) masing- masing, yaitu kelembapan pada suhu tertentu dimana bahan tidak akan kehilangan air (pindah) ke atmosfir atau tidak akan mengambil uap air dari atmosfir.

Jika RH udara < RH keseimbangan maka bahan masih dapat dikeringkan

Jika RH udara > RH keseimbangan maka bahan malahan akan menarik uap air dari udara.

Waktu

Semakin lama waktu (batas tertentu) pengeringan maka akan semakin cepat proses pengeringan selesai. Dalam pengeringan diterapkan konsep HTST (High Temperature Short Time), short time dapat menekan biaya

pengeringan.

2.3.Pisikometrik

Pisikometrik adalah salah satu sub bidang enginering yang khusus mempelajari sifat-sifat thermofisik campuran udara dan uap air untuk selanjutnya akan disebut “udara”.Pada psikometrik udara “ hanya dibedakan atas udara kering dan uap air. Meskipun udara kering masih dapat dibedakan lagi menjadi komponen gas yang terdiri dari Nitrogen,Oksigen, Karbon dioksida dan yang lainnya, tetapi pada pisikometrik semuanya diperlakukan sebagai satu unit udara kering.

Ada dua cara yang dapat digunakan untuk mendapatkan sifat-sifat thermodinamik udara, yaitu dengan menggunakan persamaan-persamaan dan dengan mengunakan grafik yang menggambarkan sifat-sifat thermodinamik udara, yang biasa disebut pysikometric chart .Dengan menggunakan grafik ini, proses-proses seperti pendinginan udara, dehumidification,dan perlakuan udara kering dapat dijelaskan dengan lebih muda. Parameter-parameter dan istilah yang digunakan untuk menggambarkan sifat-sifat thermodinamik udara antara lain :

Humidity ratio, relatif humidity,dry-bulb dan wet-bulb,termperatur,dwe-point temperatur,sensibel end laten heat,desity,moist volume,dan entalpi.

Sebelum melakukan perhitungan dan penentuan pada grafik psikometrik beberapa parameter atau sifat udara yang harus diketahui. (sumber : Dr.Eng. Himsar Ambarita,Teknik Pendingin dan Pengkondisian Udara hal : 55)

Karena udara adalah gabungan udara kering dan uap air yang terkandung pada udara, maka humidity ratio adalah perbandingan masah uap air (mw) dan massa udara (ma) yang dirumuskan:

w =

��

……….…….

(2.1)

Satuan dari parameter ini adalah kg uap air/kg udara atau gram uap air/kg udara. Dengan menggunakan persamaan gas ideal dan hukum Dalton, yang merumuskan hubungan antara kandungan gas dengan tekanan persial gas, maka rasio humiditas juga dinyatakan dengan :

�= 0,62198

����−… … … (2.2)

Dimana

p

w adalah tekanan persial uap air dan

p

atm adalah tekanan atmosfer. Persamaan (2) menunjukan bahwa hanya dengan mengetahui tekanan persial uap air pada temperatur tertentu, kita dapat menentukan kandungan uap air di udara.

2.3.2. Humiditas Relatif ( relatif humidity, atau RH)

Parameter ini adalah perbandingan fraksi mol uap air pada udara tersebut mengalami saturasi. Berdasarkan devinisi ini, persamaan yang digunakan untuk menghitung RH adalah:

��= ������

������,��� … … … . . (2.3)

Sebagai catatan, pada saat saturasi fraksi mol uap air yang terkandung didalam udara adalah fraksi mol maksimum. Setelah itu uap air akan mulai mengembun, atau berubah fasa menjadi cair. Berdasarkan fakta ini, pada saat terjadi saturasi, nilai relative hummidity adalah 100% jadi diingat saat terjadi saturasi RH=100%

Dengan mengurangi devenisi fraksi mol dan persamaan gas ideal,RH dapat didefenisikan sebagai berikut :

��=

��… … … . . … … … (2.4)

P

wsadalah tekanan uap saat terjadi saturasi dan merupakan fungsi dari temperatur. Persamaan yang disusul ASHER dapat digunakan untuk menghitung

Ln(pws) = C1/T+C2+C3T

+C4T2+C5T3+C6lnT……….……(2.5) Dimana T adalah temperatur mutlak dalam K. Konstanta C1 sampai dengan C6

adalah sebagai berikut:

C1 = - 5,8002206 x 103 C4 = 4,1764768 x10-5 C2 = 1,3914993 x C5 = -1,4452093 x 10-8 C3 = - 4,8640239 x10-2 C6 = 6,5459673

2.3.3 Temperatur Bola Kering dan Bola Basah (dry bulb and wet bulb temperatures)

Temperatur bola kering (dry bulb temperature) adalah temperatur udara yang ditunjukkan oleh alat ukur atau termometer.

Temperatur bola basah,Twb (wet bulb temperature) adalah suatu parameter

yang sulit untuk didefinisikan.Parameter ini adalah parameter fiktif yang digunakan untuk mendefinisikan sifat udara.Untuk mendefinisikan Twb akan

digunakan ilustrasi pada gambar 1.

Misalkan pada suatu ruangan yang tertutup rapat atau adiabatik, terdapat air dan udara yang mempunyai temperatur bola kering Tdb.Setelah beberapa lama, air akan menguap sebagian dan bercampur dengan udara, udara mengalami humidifikasi, dan terjadilah kondisi setimbang atau jenuh. Karena ruangan tersebut bersifat adiabatik, sementara peroses penguapan dari cair menjadi fasa uap pasti menyerap energi berupa panas, maka panas ini pasti berasal dari udara diruangan tersebut.Oleh karena itu, temperatur awal udara akan turun akibat naiknya kandungan uap airnya.Temperatur inilah yang di definisikan menjadi temperatur bola basah. Berdasarkan kesetimbangan energi, Twb dapat dihitung

dengan persamaan :

(sumber : Dr.Eng. Himsar Ambarita,Teknik Pendingin dan Pengkondisian Udara hal : 56)

�� =��� (

,− �0)ℎ��

�� … … … . … … … .2.17 Dimana :

hfg = panas penguapan air pada temperatur bola basah

cpa = panas jenis udara

2.3.4 Panas Jenis Udara Pada Tekanan Konstan ,cp

Panas jenis udara atau gas ada dua yaitu panas jenis pada volume konstan dan panas jenis pada tekanan konstan. Pada psikometrik, hanya panas jenis pada tekanan konstan yang digunakan. Panas jenis udara pada tekanan konstan adalah penjumlahan panas jenis udara kering dan panas jenis uap air yang dikandung udara tersebut.

cp = cda + wcps ...(2.6)

cda = panas jenis udara kering

cps = panas jenis uap air

Dokumen terkait