• Tidak ada hasil yang ditemukan

11. Norman, B., Pappersteknik, Kungliga Teknisk Hogskolan, Stockholm, 1992.

12. Fleer, G. J., Cohen Stuart, M. A., Scheutjens, J. M. H. M., Cosgrove, T. and Vincent, B., Polymers at Interfaces, Chapman & Hall, London, 1993.

13. Garvey, M. J., Tadros, T. F. and Vincent B., A compari-son of the volume occupied by macromolecules in the adsorbed state and in bulk solution. Adsorption of nar-row molecular weight fractions of poly(vinyl alcohol) at the polystyrene/water interface, J. Colloid Interface ScL, 49, 57-68 (1974).

14. Napper, D. H., Polymeric Stabilization of Colloidal Dis-persions, Colloid Science series, Ottevill, R. H. and Row-ell, R. L. (series Eds), Academic Press, London, 1983.

15. Swerin, A. and Odberg, L., Some aspects of retention aids, in The Fundamentals of Papermaking Materials, Vol. 1, Baker, C. F. (Ed.), Pira International, Leatherhead, UK, 1997, pp. 265-350.

16. Sennerfors, T., Froberg, J. C. and Tiberg F., Adsorption of polyelectrolyte-nanoparticle systems on silica: Influ-ence on interaction forces, J. Colloid Interface ScL, 228,

127-134 (2000).

17. Israelachvili, J. N., Intermodular and Surface Forces, Academic Press, London, 1991.

18. Evans, D. F., and Wennerstrom, H. K., The Colloidal Domain where Physics, Chemistry, Biology, and Technol-ogy Meet, VCH, New York, 1994.

19. Roberts, J. C , Neutral and alkaline sizing, in Paper Chem-istry, Robert, J. C. (Ed.), Blackie Academic Press, Lon-don, 1996, pp. 140-160.

20. Roberts, J. C , A review of advances in internal sizing, in The Fundamentals of Papermaking Materials, Vol. 3, Baker, C. F. (Ed.), Pira International, Leatherhead, UK,

1997, pp. 1541-1545.

21. Lindstrom, T. and Soderberg, G., On the mechanism of sizing with alkyl ketene dimers. Part 3, The role of pH, electrolytes, retention aids, extractives, Ca-lignosulfonatos and mode of addition on alkylketene dimer retention, Nord.

Pulp Paper Res. J., 1(2), pp. 31-38 (1986).

22. Lindstrom, T. and Soremark, C , Electrokinetic aspects of internal rosin sizing, Svensk Papperstidning, 80(1), 22-28 (1977).

23. Lindstrom, T. and Soderberg, G., Studies on internal rosin sizing. Part 3. Effects of pH, electrolyte concentration and concentration of calcium-lignosulfate on size retention, Svensk Papperstidning, 87(3) R2-R7 (1984).

24. Seppanen, R., Tiberg, F. and Valignat, M. P., Mechanism of internal sizing by alkyl ketene dimers (AKD). The role of the spreading monolayer precursor, Nordic Pulp Paper Res. J., 15, 452-458 (2000).

25. Yu, L. P. and Gamier, G., Mechanism of internal sizing with alkyl ketene dimers: the role of vapour deposition, in The Fundamentals of Papermaking Materials, Vol. 2, Baker, C. F., (Ed.), Pira International, Leatherhead, UK,

1997, pp. 1021-1046.

26. Marton, J., Dry-strength additves, in Paper Chemistry, 2nd Edn, Roberts, J. C , (Ed.), Blackie Academic Press, London, 1996, pp. 83-97.

27. Dunlop-Jones, N., Wet-strength chemistry, in Paper Chem-istry, 2nd Edn, Roberts, J. C. (Ed.), Blackie Academic Press, London, 1996, pp. 98-119.

28. Lepoutre, P., The structure of paper coatings: An update, Prog. Org. Coat, 17, 89-106 (1989).

29. Brander, J. and Thorn, I. (Eds), Surface Application of Paper Chemicals, Blackie Academic press, London, 1997.

30. Jarnstrom, L., The polyacrylate demand in suspensions containing ground calcium carbonate, Nordic Pulp Paper Res. J., 8, 27-33 (1993).

31. Jarnstrom, L., Strom, G. and Stenius, P., The adsorption of dispersing and thickening polymers and their effect on the rheology of coating colors, Tappi J., 70, 101-107 (1987).

32. Fadat, G., Engstrom, G. and Rigdahl, M., The effect of dissolved polymers on the rheological properties of coating colours, Rheol. Acta, 27, 289-297 (1988).

33. Hawe, M., The development and properties of associative thickeners, Nordic Pulp Paper Res. J., 8, 188-190 (1993).

34. Fadat, G., The influence of associative rheology modifiers on paper coating, Nordic Pulp Paper Res. J., 8, 191-194 (1993).

35. Adolfsson, M., Engstrom, G. and Rigdahl, M., The effect of the relaxation time of coating colours on the elimination of blade streaks, in Proceeding of the 1989 Coating Conference, Chicago, IL, 14-17 May 1989, Tappi Press, Atlanta, GA, 1989, pp. 55-58.

36. Husband, J., Interactions in coating colours containing clay, latex and starch, in Proceedings of the Coating Conference, Nashville, TN, 19-22 May 1996, Tappi Press Atlanta, GA, pp. 99-114.

37. Larson, R. G., The Structure and Rheology of Complex Fluids, Oxford University Press, New York, 1998.

38. Ramsey, J. D. F., and Lindner, P., Small-angle neutron scattering investigations of the structure of thixotropic dis-persions of smectic clay colloids, J. Chem. Soc, Faraday Trans., 89, 4207-4214 (1993).

39. Alince, B. and Lepoutre, P., Flow behaviour of pigment blends, Tappi J., 66, 57-60 (1983).

40. Triantafillopoulos, N., Paper Coating Viscoelasticity, Tappi Press, Atlanta, 1996.

41. Lohmander, S., Martinez, M., Lason, L., Rigdahl, M. and Li, T. -Q., Dewatering of coating dispersions - model experiments and analysis, in Proceedings of the 1999 Advanced Coating Fundamentals Symposium, Toronto, Canada, 29 April-1 May 1999, Tappi Press, Atlanta, GA, 1999, pp. 43-58.

42. Letzelter, P., Dewatering of coating colours: A filtration or thickening mechanism?, in Proceedings of the 1997 Advanced Coating Fundamentals Symposium, Philadel-phia, PA, 9-10 May 1997, Tappi Press, Atlanta, GA, 1997, pp. 103-131.

43. Sandas, S. E. and Salminen, P. J., The influence of the interaction between pigment and various cobinders on rheology, dewatering and coating performance, in Pro-ceedings of the 1991 Coating Conference, Monbreal, Canada, 19-22 May 1991, Tappi Press, Atlanta, GA, 1991, pp. 51-59.

44. Roper, J. A., Bousfield, D. W., Urscheler, R. and Salmi-nen, P., Observations and proposed mechanisms of misting on high-speed metered size press coaters, in Proceedings of the 1997 Coating Conference, Philadelphia, PA, 11-14 May 1997, Tappi Press, Atlanta, GA, 1997, pp. 1-14.

45. Adamson, A. W. and Gast, A. P., Physical Chemistry of Surfaces, John Wiley & Sons, New York, 1997.

46. de Gennes, P. G., Wetting: statics and dynamics, Rev. Mod.

Phys., 57, 827-863 (1995).

47. Blake, T. D., Dynamic contact angles and wetting kinet-ics, in Wettability, Berg, J. C. (Ed.), Surfactants Science Series, Marcel Dekker, New York, 1993, pp. 251-309.

48. Kistler, S. F., Hydrodynamics of wetting, in Wettabil-ity, Berg, J. C. (Ed.), Surfactants Science Series, Marcel Dekker, New York, 1993, pp. 311-429.

49. Zisman, W. A., Relation of equilibrium contact angle to liquid and solid constitution, in Contact Angle, Wettability, and Adhesion, Fowkes, F. W. (Ed.), Advances in Chem-istry Series, Vol. 43, American Chemical Society, Wash-ington, DC, 1964, pp. 1-51.

50. Etzler, F. M., and Conners, J. J., The surface chemistry of paper: Its relationship to printability and other paper technologies, in Surface Analysis of Paper Conners, T. E.

and Banerjee, S. (Eds), CRC Press, Boca Raton, FL, 1995, pp. 90-108.

51. Fowkes, F. M. and Mostafa, M. A., Acid-base interac-tions in polymer adsorption, Ind. Eng. Chem. Prod. Res.

Dev., 71, 3-7 (1978).

52. van Oss, C. J., Chaudhury, M. K. and Good, R. J., Interfacial Lifshitz-Vanderwaals and polar interactions in macroscopic systems, Chem. Rev., 88, 927-941 (1988).

53. van Oss, C. J., Interfacial Forces in Aqueous Media, Mar-cel Dekker, New York, 1994.

54. Berg, J. C. and Pearson, S. W., The acid-base character-ization of cellulosic fibers using inverse gas-chromato-graphy, Abstr. Papers Am. Chem. Soc, 203, 256-COLL (1992).

55. Toussaint, A. F. and Luner, P., The wetting properties of grafted cellulose films, J. Adhesion ScL Technol., 1, 635-648 (1993).

56. Lucas, R., Kolloid Z 23, 15-22 (1918).

57. Washburn, E. W., Penetration of liquids into capillaries, Phys. Rev. Ser. 2, 17, 273-283 (1921).

58. Tiberg, F., Zhmud, B., Hallstensson, K. and von Bahr, M., Capillary flow of surfactant solutions, Phys. Chem. Chem.

Phys., 2, 5189-5196, (2000).

59. Bristow, J. A., Water vapor transmission rates through paper and board, Svensk Papperstidning, 70, 623-629 (1965).

60. Conners, T. E. and Banerjee, S., (Eds), Surface Analysis of Paper, CRC Press, Boca Raton, FL, 1995, p. 346.

61. Detter-Hoskin, L. D. and Busch, K. L., SIMS: Secondary ion mass spectroscopy, in Surface Analysis of Paper, Conners, T. E. and Banerjee, S. (Eds), CRC Press, Boca Raton, FL, 1995, pp. 206-234.

62. Friese, M. A. and Banerjee, S., FT-IR spectroscopy, in Surface Analysis of Paper, Conners, T. E. and Banerjee, S.

(Eds), CRC Press, Boca Raton, FL, 1995, pp. 119-141.

63. Agarwal, U. P. and Atalla, R. H., Raman spectroscopy, in Surface Analysis of Paper, Conners, T. E. and Banerjee, S. (Eds), CRC Press, Boca Raton, FL, 1995, pp. 152-181.

64. Neimark, A. V. (Ed.), Characterization of Porous Materi-als: From Angstroms to Millimeters, Adv. Collid Interface ScL (special issue), 76-77 (1998).

65. Rouquerol, F., Rouquerol, J. and Sing, K., Adsorption by Powders and Porous Materials, Academic Press, San Diego, 1999.

66. McFadden, M. G. and Donigian, D. W., Effects of coating structure and optics on inkjet printability, in Proceedings of the 1999 Coating Conference, Toronto, Canada, 2 - 5 May 1999, Tappi Press, Atlanta, A, 1999, pp. 169-178.

67. Furo, I. and Daicic, J., NMR cryoporometry: A novel method for the investigation of the pore structure of paper and paper coatings, Nordic Pulp Paper Res. J., 14, 221-225 (1999).

68. Ishikiriyama, K., Tudoki, M. and Motomura, K., Pore size distribution (PSD) measurements of silica gels by means of differential scanning calorimetry, J. Colloid and Interface ScL, 171, 92-102 (1995).

69. Strange, J. H., Rahman, M. and Smith, E. G., Character-ization of porous solids by NMR, Phys. Rev. Lett., 71, 3589-3591 (1993).

70. Williams, G. J. and Drummond, J. G., Preparation of large sections for the microscopal study of paper structure, J.

Pulp Paper ScL, 26, 188-193 (2000).

1 Introduction 175 2 A Little Relevant Thermodynamics 176 3 Emulsification 179 3.1 General considerations 179 3.2 Preparation of emulsions by

comminution-structure of the

emulsion 180 3.3 Preparation of emulsions by

comminution-some practical

considerations 181 3.4 Preparation of emulsions by

condensation 184 4 Stability of Emulsions 186 5 Comminution or Condensation

Techni-ques-What Makes the Difference? 190

1 INTRODUCTION

Matter is, in our world, regardless of whether inor-ganic or orinor-ganic, very often organized in such a way that a high surface- or interface-to-volume ratio rep-resents a characteristic feature. All four fundamental elements of early Greek philosophy - earth, water, air and fire - contain millions of hectares of interfaces essential for maintaining life on our planet. It is evi-dent that under these circumstances surface or interface chemistry1 plays an essential role. Interface chemistry is necessary to preserve the interface, to support the exchange of matter and energy, and to allow chemical

1 The terms interface and surface chemistry will be used interchange-ably in the following text.

6 Polymerization of (or in) Monomer

Emulsions 191 6.1 General features of suspension

polymerization 192 6.2 General features of emulsion

polymerization 193 6.3 General features of miniemulsion

polymerization 195 7 Fixation of an Emulsion by Radical

Polymerization in Aqueous Media-Fact or

Fancy? 196 8 References 198

reactions. Examples of such colloidal systems include fog, mist, smoke, mineral alloys, natural latex, milk, cells in living organisms and blood, but also nanometre-thick cellulose fibre bundles or the capillary system in plants and the muscular tissue and the vein sys-tem in living organisms. In the energy balance of col-loidal systems, the interface or surface energy cannot be neglected. From a thermodynamic point of view the interface area adds to the extensive quantities of volume and amount of substance. Many of the colloidal systems are in the form of dispersions. The latter consists of at least two phases of one or more components. How-ever, in most cases colloidal dispersions appear to the human eye as homogeneous. The characteristic dimen-sion of the dispersed phase of a colloidal system is, independent of the shape, which can be either spherical,

CHAPTER 8

Surface Chemistry in the Polymerization