• Tidak ada hasil yang ditemukan

Results and Discussion

Dalam dokumen 20Jan_Corresponding Author (Halaman 44-48)

VII. MINOR REVISION REQUIRED

2. Results and Discussion

Next theorem proves the exact value of the locating chromatic number for barbell graph𝐡𝑛,𝑛.

Theorem 5. Let 𝐡𝑛,𝑛 be a barbell graph for𝑛 β‰₯ 3. Then the locating chromatic number of𝐡𝑛,𝑛isπœ’πΏ(𝐡𝑛,𝑛) = 𝑛 + 1.

Proof. Let𝐡𝑛,𝑛,𝑛 β‰₯ 3, be the barbell graph with the vertex set𝑉(𝐡𝑛,𝑛) = {𝑒𝑖, V𝑖 : 1 ≀ 𝑖 ≀ 𝑛} and the edge set 𝐸(𝐡𝑛,𝑛)

=β‹ƒπ‘›βˆ’1𝑖=1{𝑒𝑖𝑒𝑖+𝑗 : 1 ≀ 𝑗 ≀ 𝑛 βˆ’ 𝑖} βˆͺ β‹ƒπ‘›βˆ’1𝑖=1{V𝑖V𝑖+𝑗 : 1 ≀ 𝑗 ≀ 𝑛 βˆ’ 𝑖} βˆͺ {𝑒𝑛V𝑛}.

First, we determine the lower bound of the locating chromatic number for barbell graph 𝐡𝑛,𝑛 for𝑛 β‰₯ 3. Since the barbell graph𝐡𝑛,𝑛 contains two isomorphic copies of a complete graph𝐾𝑛, then with respect to Theorem3we have πœ’πΏ(𝐡𝑛,𝑛) β‰₯ 𝑛. Next, suppose that 𝑐 is a locating coloring using 𝑛 colors. It is easy to see that the barbell graph 𝐡𝑛,𝑛

contains two vertices with the same color codes, which is a contradiction. Thus, we have thatπœ’πΏ(𝐡𝑛,𝑛) β‰₯ 𝑛 + 1.

To show that 𝑛 + 1 is an upper bound for the locating chromatic number of barbell graph𝐡𝑛,𝑛 it suffices to prove the existence of an optimal locating coloring𝑐 : 𝑉(𝐡𝑛,𝑛) 󳨀→

{1, 2, . . . , 𝑛 + 1}. For 𝑛 β‰₯ 3 we construct the function 𝑐 in the following way:

𝑐 (𝑒𝑖) = 𝑖, 1 ≀ 𝑖 ≀ 𝑛

𝑐 (V𝑖) = {{ {{ {{ {{ {

𝑛, for𝑖 = 1 𝑖, for2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 𝑛 + 1, otherwise.

(1)

By using the coloring𝑐, we obtain the color codes of 𝑉(𝐡𝑛,𝑛) as follows:

𝑐Π(𝑒𝑖)

= {{ {{ {{ {{ {

0, for π‘–π‘‘β„Ž component, 1 ≀ 𝑖 ≀ 𝑛

2, for (𝑛 + 1)π‘‘β„Ž component, 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 1, otherwise,

𝑐Π(V𝑖) = {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {

0, for π‘–π‘‘β„Ž component, 2 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 forπ‘›π‘‘β„Ž component, 𝑖 = 1, and for (𝑛 + 1)π‘‘β„Ž component, 𝑖 = 𝑛, 3, for 1𝑠𝑑 component, 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 2, for 1𝑠𝑑 component, 𝑖 = 𝑛 1, otherwise.

(2)

Since all vertices in𝑉(𝐡𝑛,𝑛) have distinct color codes, then the coloring𝑐 is desired locating coloring. Thus, πœ’πΏ(𝐡𝑛,𝑛) = 𝑛 + 1.

Corollary 6. For 𝑛, π‘š β‰₯ 3, and π‘š ΜΈ= 𝑛, the locating chromatic number of barbell graphπ΅π‘š,𝑛is

πœ’πΏ(π΅π‘š,𝑛) = max {π‘š, 𝑛} . (3) Next theorem provides the exact value of the locating chromatic number for barbell graph𝐡𝑃(𝑛,1).

Theorem 7. Let 𝐡𝑃(𝑛,1)be a barbell graph for𝑛 β‰₯ 3. Then the locating chromatic number of𝐡𝑃(𝑛,1)is

πœ’πΏ(𝐡𝑃(𝑛,1)) ={ {{

4, for odd 𝑛

5, for even 𝑛. (4)

Proof. Let𝐡𝑃(𝑛,1),𝑛 β‰₯ 3, be the barbell graph with the vertex set𝑉(𝐡𝑃(𝑛,1)) = {𝑒𝑖, 𝑒𝑛+𝑖, 𝑀𝑖, 𝑀𝑛+𝑖: 1 ≀ 𝑖 ≀ 𝑛} and the edge set 𝐸(𝐡𝑃(𝑛,1)) = {𝑒𝑖𝑒𝑖+1, 𝑒𝑛+𝑖𝑒𝑛+𝑖+1, 𝑀𝑖𝑀𝑖+1,𝑀𝑛+𝑖𝑀𝑛+𝑖+1 : 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1} βˆͺ {𝑒𝑛𝑒1, 𝑒2𝑛𝑒𝑛+1, 𝑀𝑛𝑀1, 𝑀2𝑛𝑀𝑛+1} βˆͺ {𝑒𝑖𝑒𝑛+𝑖, 𝑀𝑖𝑀𝑛+𝑖: 1 ≀ 𝑖 ≀ 𝑛} βˆͺ {𝑒𝑛𝑀𝑛}.

Let us distinguish two cases.

International Journal of Mathematics and Mathematical Sciences 3 Case 1 (𝑛 odd). According to Theorem4for𝑛 odd we have

πœ’πΏ(𝐡𝑃(𝑛,1)) β‰₯ 4. To show that 4 is an upper bound for the locating chromatic number of the barbell graph𝐡𝑃(𝑛,1) we describe an locating coloring𝑐 using 4 colors as follows:

𝑐 (𝑒𝑖) = {{ {{ {{ {{ {

1, for 𝑖 = 1 3, for even 𝑖, 𝑖 β‰₯ 2 4, for odd 𝑖, 𝑖 β‰₯ 3.

𝑐 (𝑒𝑛+𝑖) = {{ {{ {{ {{ {

2, for 𝑖 = 1 3, for odd 𝑖, 𝑖 β‰₯ 3 4, for even 𝑖, 𝑖 β‰₯ 2.

𝑐 (𝑀𝑖) = {{ {{ {{ {{ {

1, for odd 𝑖, 𝑖 ≀ 𝑛 βˆ’ 2 2, for even 𝑖, 𝑖 ≀ 𝑛 βˆ’ 1 3, for 𝑖 = 𝑛.

𝑐 (𝑀𝑛+𝑖) = {{ {{ {{ {{ {

1, for even 𝑖, 𝑖 ≀ 𝑛 βˆ’ 1 2, for odd 𝑖, 𝑖 ≀ 𝑛 βˆ’ 2 4, for 𝑖 = 𝑛.

(5)

For𝑛 odd the color codes of 𝑉(𝐡𝑃(𝑛,1)) are

𝑐Π(𝑒𝑖)

= {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {

𝑖, for2𝑛𝑑 component, 𝑖 ≀ 𝑛 + 1 2 𝑖 βˆ’ 1, for1𝑠𝑑component, 𝑖 ≀𝑛 + 1

2 𝑛 βˆ’ 𝑖 + 1, for 1𝑠𝑑component, 𝑖 >𝑛 + 1

2 𝑛 βˆ’ 𝑖 + 2, for 2𝑛𝑑 component, 𝑖 > 𝑛 + 1 0, for3π‘‘β„Ž component, 𝑖 even, 𝑖 β‰₯ 22

for4π‘‘β„Ž component, 𝑖 odd, 𝑖 β‰₯ 3 1, otherwise.

𝑐Π(𝑒𝑛+𝑖)

= {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {

𝑖, for1𝑠𝑑 component, 𝑖 ≀𝑛 + 1 2 𝑖 βˆ’ 1, for2𝑛𝑑 component, 𝑖 ≀ 𝑛 + 1

2 𝑛 βˆ’ 𝑖 + 1, for 2𝑛𝑑 component, 𝑖 > 𝑛 + 1

2 𝑛 βˆ’ 𝑖 + 2, for 1𝑠𝑑 component, 𝑖 >𝑛 + 1 0, for4π‘‘β„Ž component, 𝑖 even, 𝑖 β‰₯ 22

for3π‘‘β„Ž component, 𝑖 odd, 𝑖 β‰₯ 3 1, otherwise.

𝑐Π(𝑀𝑖)

= {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {

𝑖, for3π‘‘β„Ž component, 𝑖 ≀ 𝑛 βˆ’ 1 2 𝑖 + 1, for4π‘‘β„Ž component, 𝑖 ≀ 𝑛 βˆ’ 1

2 𝑛 βˆ’ 𝑖, for3π‘‘β„Ž component, 𝑖 β‰₯ 𝑛 + 1

2 𝑛 βˆ’ 𝑖 + 1, for 4π‘‘β„Ž component, 𝑖 β‰₯ 𝑛 + 1 0, for2𝑛𝑑 component, 𝑖 even, 𝑖 ≀ 𝑛 βˆ’ 12

for1𝑠𝑑 component, 𝑖 odd, 𝑖 ≀ 𝑛 βˆ’ 2 1, otherwise.

𝑐Π(𝑀𝑛+𝑖)

= {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {

𝑖, for4π‘‘β„Ž component, 𝑖 ≀ 𝑛 βˆ’ 1 2 𝑖 + 1, for3π‘‘β„Ž component, 𝑖 ≀ 𝑛 βˆ’ 1

2 𝑛 βˆ’ 𝑖, for4π‘‘β„Ž component, 𝑖 β‰₯ 𝑛 + 1

2 𝑛 βˆ’ 𝑖 + 1, for 3π‘‘β„Ž component, 𝑖 β‰₯ 𝑛 + 1 0, for1𝑠𝑑 component, 𝑖 even, 𝑖 ≀ 𝑛 βˆ’ 12

for2𝑛𝑑 component, 𝑖 odd, 𝑖 ≀ 𝑛 βˆ’ 2 1, otherwise.

(6)

Since all vertices in𝐡𝑃(𝑛,1)have distinct color codes, then the coloring𝑐 with 4 colors is an optimal locating coloring and it proves thatπœ’πΏ(𝐡𝑃(𝑛,1)) ≀ 4.

Case 2 (𝑛 even). In view of the lower bound from Theorem7 it suffices to prove the existence of a locating coloring𝑐 : 𝑉(𝐡𝑃(𝑛,1)) 󳨀→ {1, 2, . . . , 5} such that all vertices in 𝐡𝑃(𝑛,1)

4 International Journal of Mathematics and Mathematical Sciences

have distinct color codes. For𝑛 even, 𝑛 β‰₯ 4, we describe the locating coloring in the following way:

𝑐 (𝑒𝑖) = {{ {{ {{ {{ {{ {{ {{ {

1, for 𝑖 = 1

3, for even 𝑖, 2 ≀ 𝑖 ≀ 𝑛 βˆ’ 2 4, for odd 𝑖, 3 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 5, for 𝑖 = 𝑛.

𝑐 (𝑒𝑛+𝑖) = {{ {{ {{ {{ {

2, for 𝑖 = 1 3, for odd 𝑖, 𝑖 β‰₯ 3 4, for even 𝑖, 𝑖 β‰₯ 2.

𝑐 (𝑀𝑖) = {{ {{ {{ {{ {{ {{ {{ {

1, for odd 𝑖, 𝑖 ≀ 𝑛 βˆ’ 3 2, for even 𝑖, 𝑖 ≀ 𝑛 βˆ’ 2 3, for 𝑖 = 𝑛 βˆ’ 1 4, for 𝑖 = 𝑛.

𝑐 (𝑀𝑛+𝑖) = {{ {{ {{ {{ {

1, for even 𝑖, 𝑖 ≀ 𝑛 βˆ’ 2 2, for odd 𝑖, 𝑖 ≀ 𝑛 βˆ’ 1 5, for 𝑖 = 𝑛.

(7)

In fact, our locating coloring of 𝐡𝑃(𝑛,1), 𝑛 even, has been chosen in such a way that the color codes are

𝑐Π(𝑒𝑖)

= {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {

𝑖, for2𝑛𝑑 and5π‘‘β„Žcomponents, 𝑖 ≀ 𝑛 2 𝑖 βˆ’ 1, for1𝑠𝑑component, 𝑖 ≀𝑛

2 𝑛 βˆ’ 𝑖, for5π‘‘β„Žcomponent, 𝑖 > 𝑛 2 𝑛 βˆ’ 𝑖 + 1, for 1𝑠𝑑component, 𝑖 >𝑛 2 𝑛 βˆ’ 𝑖 + 2, for 2𝑛𝑑 component, 𝑖 >𝑛

0, for3π‘‘β„Žcomponent, 𝑖 even, 2 ≀ 𝑖 ≀ 𝑛 βˆ’ 22

for4π‘‘β„Žcomponent, 𝑖 odd, 3 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 2, for4π‘‘β„Žcomponent, 𝑖 = 1

for3π‘‘β„Žcomponent, 𝑖 = 𝑛 1, otherwise.

𝑐Π(𝑒𝑛+𝑖)

= {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {

𝑖, for1𝑠𝑑component, 𝑖 ≀𝑛 2 𝑖 βˆ’ 1, for2𝑛𝑑 component, 𝑖 ≀𝑛

2 𝑛 + 𝑖, for5π‘‘β„Žcomponent, 𝑖 ≀ 𝑛 2

𝑛 βˆ’ 𝑖 + 1, for 2𝑛𝑑 and5π‘‘β„Žcomponents, 𝑖 > 𝑛 2 𝑛 βˆ’ 𝑖 + 2, for 1π‘‘β„Žcomponent,𝑖 >𝑛

0, for3π‘‘β„Žcomponent, 𝑖 odd, 3 ≀ 𝑖 ≀ 𝑛 βˆ’ 12

for4π‘‘β„Žcomponent, 𝑖 even, 2 ≀ 𝑖 ≀ 𝑛 2, for3π‘‘β„Žcomponent, 𝑖 = 1

1, otherwise.

𝑐Π(𝑀𝑖)

= {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {

𝑖, for4π‘‘β„Žcomponent, 𝑖 ≀ 𝑛 2 𝑖 + 1, for5π‘‘β„Žcomponent, 𝑖 ≀ 𝑛 2 for3π‘‘β„Žcomponent, 𝑖 ≀ 𝑛

2βˆ’ 1 𝑛 βˆ’ 𝑖, for4π‘‘β„Žcomponent, 𝑖 > 𝑛

2 𝑛 βˆ’ 𝑖 + 1, for 5π‘‘β„Žcomponent, 𝑖 > 𝑛 2 𝑛 βˆ’ 𝑖 βˆ’ 1, for 3π‘‘β„Žcomponent, 𝑛

2≀ 𝑖 ≀ 𝑛 βˆ’ 1 0, for1𝑠𝑑component, 𝑖 odd, 𝑖 ≀ 𝑛 βˆ’ 3

for2𝑛𝑑 component, 𝑖 even, 𝑖 ≀ 𝑛 βˆ’ 2 2, for1𝑠𝑑component, 𝑖 = 𝑛 βˆ’ 1

for2𝑛𝑑 component, 𝑖 = 𝑛 1, otherwise.

𝑐Π(𝑀𝑛+𝑖)

= {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {{ {

𝑖, for5π‘‘β„Žcomponent, 𝑖 ≀ 𝑛 2 𝑖 + 1, for4π‘‘β„Žcomponent, 𝑖 ≀ 𝑛 2 𝑖 + 2 for3π‘‘β„Žcomponent, 𝑖 ≀ 𝑛

2βˆ’ 1 𝑛 βˆ’ 𝑖, for3π‘‘β„Žcomponent, 𝑛

2≀ 𝑖 ≀ 𝑛 βˆ’ 1 for5π‘‘β„Žcomponent, 𝑖 > 𝑛

2 𝑛 βˆ’ 𝑖 + 1, for 4π‘‘β„Žcomponent, 𝑖 > 𝑛

0, for1𝑠𝑑component, 𝑖 even, 𝑖 ≀ 𝑛 βˆ’ 22

for2𝑛𝑑 component, 𝑖 odd, 𝑖 ≀ 𝑛 βˆ’ 1 2, for1𝑠𝑑and3π‘‘β„Žcomponents, 𝑖 = 𝑛 1, otherwise.

(8)

Since for𝑛 even all vertices of 𝐡𝑃(𝑛,1)have distinct color codes then our locating coloring has the required properties and πœ’πΏ(𝐡𝑃(𝑛,1)) ≀ 5. This concludes the proof.

International Journal of Mathematics and Mathematical Sciences 5

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

3

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors are thankful to DRPM Dikti for the Fundamental Grant 2018.

References

[1] G. Chartrand, P. Zhang, and E. Salehi, β€œOn the partition dimension of a graph,” vol. 130, pp. 157–168.

[2] V. Saenpholphat and P. Zhang, β€œConditional resolvability: a survey,” International Journal of Mathematics and Mathematical Sciences, vol. 38, pp. 1997–2017, 2004.

[3] M. Johnson, β€œStructure-activity maps for visualizing the graph variables arising in drug design,” Journal of Biopharmaceutical Statistics, vol. 3, no. 2, pp. 203–236, 1993.

[4] G. Chartrand and P. Zhang, β€œTHE theory and applications of resolvability in graphs. A survey,” vol. 160, pp. 47–68.

[5] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P.

Zhang, β€œThe locating-chromatic number of a graph,” Bulletin of the Institute of Combinatorics and Its Applications, vol. 36, pp.

89–101, 2002.

[6] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P.

Zhang, β€œGraphs of order n-1,” Discrete Mathematics, vol. 269, no. 1-3, pp. 65–79, 2003.

[7] A. Behtoei and B. Omoomi, β€œOn the locating chromatic number of Kneser graphs,” Discrete Applied Mathematics: The Journal of Combinatorial Algorithms, Informatics and Computational Sciences, vol. 159, no. 18, pp. 2214–2221, 2011.

[8] Asmiati, Wamiliana, Devriyadi, and L. Yulianti, β€œOn some petersen graphs having locating chromatic number four or five,”

Far East Journal of Mathematical Sciences, vol. 102, no. 4, pp.

769–778, 2017.

[9] E. T. Baskoro and Asmiati, β€œCharacterizing all trees with locating-chromatic number 3,” Electronic Journal of Graph Theory and Applications. EJGTA, vol. 1, no. 2, pp. 109–117, 2013.

[10] D. K. Syofyan, E. T. Baskoro, and H. Assiyatun, β€œTrees with certain locating-chromatic number,” Journal of Mathematical and Fundamental Sciences, vol. 48, no. 1, pp. 39–47, 2016.

[11] Asmiati, H. Assiyatun, and E. T. Baskoro, β€œLocating-chromatic number of amalgamation of stars,” ITB Journal of Science, vol.

43A, no. 1, pp. 1–8, 2011.

[12] Asmiati, H. Assiyatun, E. T. Baskoro, D. Suprijanto, R. Siman-juntak, and S. Uttunggadewa, β€œThe locating-chromatic number of firecracker graphs,” Far East Journal of Mathematical Sciences (FJMS), vol. 63, no. 1, pp. 11–23, 2012.

[13] D. Welyyanti, E. T. Baskoro, R. Simanjuntak, and S. Uttung-gadewa, β€œOn locating-chromatic number of complete n-ary tree,” AKCE International Journal of Graphs and Combinatorics, vol. 10, no. 3, pp. 309–315, 2013.

[14] M. E. Watkins, β€œA theorem on tait colorings with an application to the generalized Petersen graphs,” Journal of Combinatorial Theory, vol. 6, no. 2, pp. 152–164, 1969.

Composition Comments

1. Please check and confirm the author(s) first and last names and their order which exist in the last page.

2. The highlighted part is grammatically unclear/incorrect.

Please rephrase this part for the sake of clarity and correct-ness.

3. Please carefully check your Data Statement, as it may have been added/rephrased by our editorial staff. If you’d like assistance in making further revisions, please refer to our Research Data policy at https://www.hindawi.com/research.data/#statement.

Dalam dokumen 20Jan_Corresponding Author (Halaman 44-48)

Dokumen terkait