• Tidak ada hasil yang ditemukan

Rotor kutub tak menonjol (Rotor Silinder)

Gambar 2.7 Rotor Kutub Menonjol Generator Sinkron

Rotor kutub menonjol umumnya digunakan pada generator sinkron dengan kecepatan putaran rendah dan sedang (120-400 rpm). Generator sinkron tipe seperti ini biasanya dikopel oleh mesin diesel atau turbin air pada sistem pembangkit listrik. Rotor kutub menonjol baik digunakan untuk putaran rendah dan sedang karena :

• Konstruksi kutub menonjol tidak terlalu kuat untuk menahan tekanan mekanis apabila diputar dengan kecepatan tinggi.

• Kutub menonjol akan mengalami rugi-rugi yang besar dan bersuara bising jika diputar dengan kecepatan tinggi.

2. Rotor kutub tak menonjol (Rotor Silinder)

Rotor tipe ini dibuat dari plat baja berbentuk silinder yang mempunyai sejumlah slot sebagai tempat kumparan. Karena adanya slot-slot dan juga kumparan medan yang terletak pada rotor maka jumlah kutub pun sedikit yang dapat dibuat. Belitan-belitan medan dipasang pada alur-alur di sisi luarnya dan terhubung seri yang dienerjais oleh eksiter. Gambar bentuk kutub silinder generator sinkron tampak seperti pada Gambar 6.1.1.b berikut:

29 Gambar 2.8 Rotor Kutub tak Menonjol Generator Sinkron

Rotor terdiri dari beberapa komponen utama yaitu : 1. Slip Ring

Slip ring merupakan cincin logam yang melingkari poros rotor tetapi dipisahkan oleh isolasi tertentu. Terminal kumparan rotor dipasangkan ke-slip ring ini kemudian dihubungkan kesumber arus searah melalui sikat (brush) yang letaknya menempel pada slip ring.

2. Sikat

Sebagaian dari generator sinkron ada yang memiliki sikat ada juga yang tidak memiliki sikat. Sikat pada generator sinkron berfungsi sebagai saklar putar untuk mengalirkan arus DC ke-kumparan medan pada rotor generator sikron. Sikat terbuat dari bahan karbon tertentu.

3. Kumpara rotor (kumparan medan)

Kumparan medan merupakan unsure yang memegang peranan utama dalam menghasilkan medan magnet. Kumparan ini mendapat arus searah dari sumber eksitasi tertentu.

4. Poros Rotor

Poros rotor merupakan tempat meletakkan kumparan medan, dimana pada poros tersebut telah terbentuk slot-slot secara paralel terhadap poros rotor.

B. Stator

Stator atau armatur adalah bagian generator yang berfungsi sebagai tempat untuk menerima induksi magnet dari rotor. Arus AC yang menuju ke beban disalurkan melalui armatur, komponen ini berbentuk sebuah rangka silinder dengan

30 lilitan kawat konduktor yang sangat banyak. Armatur selalu diam (tidak bergerak). Oleh karena itu, komponen ini juga disebut dengan stator. Lilitan armatur generator dalam wye dan titik netral dihubungkan ke tanah. Lilitan dalam wye dipilih karena: 1. Meningkatkan daya output.

2. Menghindari tegangan harmonik, sehingga tegangan line tetap sinusoidal dalam kondisi beban apapun.

Stator dari mesin sinkron terbuat dari bahan ferromagnetik yang berbentuk laminasi untuk mengurangi rugi-rugi arus pusar. Dengan inti ferromagnetik yang bagus berarti permeabilitas dan resistivitas dari bahan tinggi. Gambar 2.9 berikut memperlihatkan alur stator tempat kumparan jangkar

Gambar 2.9 Inti Stator dan Alur Pada Stator 2.3.4.2 Prinsip kerja

Adapun prinsip kerja dari suatu generator sinkron adalah:

1. Kumparan medan yang terdapat pada rotor dihubungkan dengan sumber eksitasi tertentu yang akan mensuplai arus searah terhadap kumparan medan. Dengan adanya arus searah yang mengalir melalui kumparan medan maka akan menimbulkan fluks yang besarnya terhadap waktu adalah tetap.

2. Penggerak mula (Prime Mover) yang sudah terkopel dengan rotor segera dioperasikan sehingga rotor akan berputar pada kecepatan nominalnya persamaan (6.1) dimana : � =120� ... (2.4)

31 p = Jumlah kutub rotor

f = frekuensi (Hz)

3. Perputaran rotor tersebut sekaligus akan memutar medan magnet yang dihasilkan oleh kumparan medan. Medan putar yang dihasilkan pada rotor, akan diinduksikan pada kumparan jangkar sehingga pada kumparan jangkar yang terletak di stator akan dihasilkan fluks magnetik yang berubah-ubah besarnya terhadap waktu. Adanya perubahan fluks magnetik yang melingkupi suatu kumparan akan menimbulkan ggl induksi pada ujung-ujung kumparan tersebut, hal tersebut sesuai dengan persamaan

dimana : �= −��∅�� ...(2.5) �= −��∅���� sin ���� ...(2.6) �= −��∅��������� ...(2.7)

E = ggl induksi (Volt) N = Jumlah belitan C = Konstanta p = Jumlah kutub n = Putaran (rpm) f = Frequensi (Hz)

ϕ = Fluks magnetik (weber)

Untuk generator sinkron tiga phasa, digunakan tiga kumparan jangkar yang ditempatkan di stator yang disusun dalam bentuk tertentu, sehingga susunan kumparan jangkar yang sedemikian akan membangkitkan tegangan induksi pada ketiga kumparan jangkar yang besarnya sama tapi berbeda fasa 1200 satu sama lain. Setelah itu ketiga terminal kumparan jangkar siap dioperasikan untuk menghasilkan energi listrik.

32 2.3.4.3 Reaksi Jangkar

Bila beban terhubung ke terminal generator maka pada belitan stator akan mengalir arus, sehigga timbul medan magnet pada belitan stator. Medan magnet ini akan mendistorsi medan magnet yang dihasilkan belitan rotor. Seperti yang dijelaskan pada Gambar:

Gambar 2.10 Model Reaksi Jangkar

2.3.3. 4 Sistem Eksitasi

Berdasarkan cara penyaluran arus searah pada rotor generator sinkron, sistem eksitasi terdiri dari dua jenis yaitu sistem eksitasi dengan menggunakan sikat (brushless excitation) dan sistem eksitasi tanpa menggunakan sikat (brushless). Ada dua jenis sistem eksitasi dengan menggunakan sikat yaitu :

1. Sistem eksitasi konvensional (menggunakan generator arus searah). 2. Sistem eksitasi statis.

Sedangkan sistem eksitasi tanpa menggunakan sikat terdiri dari : 1. Sistem eksitasi dengan menggunakan baterai.

2. Sistem eksitasi dengan menggunakan Permanen Magnet Generator (PMG)

33 Dalam prinsip dasar konversi energi kita mengacu pada hukum kekekalan energi yaitu energi tidak dapat diciptakan dan tidak dapat dimusnahkan melainkan hanya dapat diubah dari satu bentuk ke bentuk yang lain.

Hampir semua bentuk energi, sebelum diubah menjadi energi listrik harus diubah dulu menjadi energi mekanik dalam bentuk putaran. Termasuk diantaranya energi dalam bentuk angin, aliran air dan aliran uap semuanya harus diubah terlebih dahulu menjadi energi mekanik berbentuk putaran agar bisa dikonversikan menjadi energi listrik. Sementara uap diperoleh melalui proses pemanasan air di dalam boiler dan boiler memerlukan bahan bakar. Jadi, secara sederhana dapat kita katakan bahwa segala sesuatu yang dapat dibakar dan dipergunakan untuk memanaskan air sehingga air tersebut berubah menjadi uap bertekanan yang akan digunakan untuk memutar turbin uap yang dikopel dengan generator, dapat diubah menjadi energi listrik.

Pelet Kaliandra Merah dapat dijadikan bahan bakar merupakan sebuah PLTU.

PLTU menggunakan fluida kerja air uap yang bersirkulasi secara tertutup. Siklus tertutup artinya menggunakan fluida yang sama secara berulang-ulang. Urutan sirkulasinya secara singkat adalah sebagai berikut:

1. Air diisikan ke boiler hingga mengisi penuh seluruh luas permukaan pemindah panas. Didalam boiler air ini dipanaskan dengan gas panas hasil pembakaran bahan bakar dengan udara sehingga berubah menjadi uap.

2. Uap hasil produksi boiler dengan tekanan dan temperatur tertentu diarahkan untuk memutar turbin sehingga menghasilkan daya mekanik berupa putaran.

3. Generator yang dikopel langsung dengan turbin berputar menghasilkan energi listrik sebagai hasil dari perputaran medan magnet dalam kumparan.

34 Uap bekas keluar turbin masuk ke kondensor untuk didinginkan dengan air pendingin agar berubah kembali menjadi air. Air kondensat hasil kondensasi uap kemudian digunakan lagi sebagai air pengisi boiler. Demikian siklus ini berlangsung terus menerus dan berulang-ulang.

Sekalipun siklus fluida kerjanya merupakan siklus tertutup, namun jumlah air dalam siklus akan mengalami pengurangan. Pengurangan air ini disebabkan oleh kebocoran - kebocoran baik yang disengaja maupun yang tidak disengaja. Untuk mengganti air yang hilang, maka perlu adanya penambahan air kedalam siklus. Kriteria air penambah (make up water) ini harus sama dengan air yang ada dalam siklus.

Adapun bahan bakar boiler pada PLTU ini adalah pelet kayu Pohon Kaliandra Merah. Pohon Kaliandra Merah yang sudah ditebang, dikurangi kadara airnya, kemudian diolah menjadi potongan-potongan kecil berupa pelet.

2.3.6 Peralatan Utama pada PLTU berbahan Bakar Pelet Kaliandra a. Raw Water Tank

Raw Water Tank berfungsi untuk tempat penampungan air hasil demineralisasi.

b. Water Treatment Plant ( WTP )

WTP berfungsi sebagai tempat terjadinya proses demineralisasi air. Air ini yang akan disuplai ke boiler.

c. Circuling Water Pump

Circuling Water Pump berfungsi sebagai pompa untuk menyirkulasi air. d. Feed Water Tank

35 Tempat dikumpulkannya air sebelum disupply ke boiler.

e. Boiler Feed Pump

Pompa untuk memompakan air dari Feed Water Tank ke dalam boiler.

f. Economizer

Adalah suatu perangkat mekanik yang dimaksudkan untuk mengurangi konsumsi energi, atau untuk melakukan fungsi lain, seperti memanaskan cairan.

g. Boiler

Suatu boiler (pembangkit uap) merupakan kombinasi kompleks dari economizer, ketel, pemanas lanjut, pemanas ulang, dan pemanas udara awal.

Ketel adalah bagian dari pembangkit uap di mana air jenuh diubah menjadi uap jenuh. Ketel ini dapat diklasifikasikan berdasar:

1. Jenisnya

a. Ketel tangki b. Ketel pipa air c. Ketel pipa api

Dokumen terkait