• Tidak ada hasil yang ditemukan

BAB V KESIMPULAN DAN SARAN

5.2. Saran

Pada saat mereaksikan prekursor logam sulfat dengan Na2CO3 (dalam proses filtrasi), disarankan lebih teliti lagi dengan tidak terburu-buru untuk lebih memastikan bahwa reaksi ion exchange optimal sehingga benar benar bersih tidak ada pengotor sulfur. Kemudian saat proses milling dilakukan, rpm dan waktu yang digunakan disarankan bertahap agar pencampuran lebih sempurna. Setelah itu, pada metode sintering yang digunakan untuk NCM 811 SSR lebih diperhatikan lagi mengenai suhu yang digunakan.

DAFTAR PUSTAKA

[1] “Global EV Outlook 2020 – Analysis,” IEA. [Online]. Available:

https://www.iea.org/reports/global-ev-outlook-2020. [Accessed: 16-Sep-2020].

[2] J.-M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium

batteries,” Nature, vol. 414, no. 6861, pp. 359–367, 2001.

[3] L. Wang, B. Wu, D. Mu, X. Liu, Y. Peng, H. Xu, Q. Liu, L. Gai, and F. Wu, “Single-crystal

LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion

batteries,” Journal of Alloys and Compounds, vol. 674, pp. 360–367, 2016.

[4] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials: present and

future,” Materials Today, vol. 18, no. 5, pp. 252–264, 2015.

[5] S.-T. Myung, F. Maglia, K.-J. Park, C. S. Yoon, P. Lamp, S.-J. Kim, and Y.-K. Sun, “Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives,” ACS Energy Letters, vol. 2, no. 1, pp. 196–223, 2016.

[6] J. J. Saavedra-Arias, N. K. Karan, D. K. Pradhan, A. Kumar, S. Nieto, R. Thomas, and R.

S. Katiyar, “Synthesis and electrochemical properties of Li(Ni0.8Co0.1Mn0.1)O2 cathode material: Ex situ structural analysis by Raman scattering and X-ray diffraction at various stages of charge–discharge process,” Journal of Power Sources, vol. 183, no. 2, pp. 761– 765, 2008.

[7] D. Andre, S.-J. Kim, P. Lamp, S. F. Lux, F. Maglia, O. Paschos, and B. Stiaszny, “Future

generations of cathode materials: an automotive industry perspective,” Journal of Materials Chemistry A, vol. 3, no. 13, pp. 6709–6732, 2015.

[8] “Nickel Data Sheet - Mineral Commodity Summaries 2020.” [Online]. Available:

https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-nickel.pdf. [Accessed: 06-Apr-2020].

[9] C. Graf, “Cathode materials for lithium-ion batteries,” Lithium-Ion Batteries: Basics and

Applications, pp. 29–41, 2018.

[10] H.-J. Noh, S. Youn, C. S. Yoon, and Y.-K. Sun, “Comparison of the structural and

electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries,” Journal of Power Sources, vol. 233, pp. 121–130, 2013.

[11] L. Wang, B. Wu, D. Mu, X. Liu, Y. Peng, H. Xu, Q. Liu, L. Gai, and F. Wu, “Single-crystal

LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion

batteries,” Journal of Alloys and Compounds, vol. 674, pp. 360–367, 2016.

[12] S. Liu, Z. Dang, D. Liu, C. Zhang, T. Huang, and A. Yu, “Comparative studies of zirconium

[13] H.-R. Mao, “Solid-state Synthesis of High-Capacity LiNi0.8Co0.1Mn0.1O2 Cathode by Transition Metal Oxides,” International Journal of Electrochemical Science, pp. 10536– 10545, 2016.

[14] H. Lu, H. Zhou, A. M. Svensson, A. Fossdal, E. Sheridan, S. Lu, and F. Vullum-Bruer, “High capacity Li[Ni0.8Co0.1Mn0.1]O2 synthesized by sol–gel and co-precipitation methods as cathode materials for lithium-ion batteries,” Solid State Ionics, vol. 249-250, pp. 105–111, 2013.

[15] C.-C. Pan, C. E. Banks, W.-X. Song, C.-W. Wang, Q.-Y. Chen, and X.-B. Ji, “Recent

development of LiNixCoyMnzO2: Impact of micro/nano structures for imparting improvements in lithium batteries,” Transactions of Nonferrous Metals Society of China, vol. 23, no. 1, pp. 108–119, 2013.

[16] Y. Zhang, Q.-Y. Huo, P.-P. Du, L.-Z. Wang, A.-Q. Zhang, Y.-H. Song, Y. Lv, and G.-Y.

Li, “Advances in new cathode material LiFePO4 for lithium-ion batteries,” Synthetic Metals, vol. 162, no. 13-14, pp. 1315–1326, 2012.

[17] O. Toprakci, H. A. Toprakci, L. Ji, and X. Zhang, “Fabrication and Electrochemical

Characteristics of LiFePO4 Powders for Lithium-Ion Batteries,” KONA Powder and Particle Journal, vol. 28, no. 0, pp. 50–73, 2010.

[18] D. Kho, D. B. Salasabila, and H. D. P. Al-Kayyis, “Pengertian Baterai dan Jenis-jenis

Baterai,” Teknik Elektronika, 22-Jul-2017. [Online]. Available:

https://teknikelektronika.com/pengertian-baterai-jenis-jenis-baterai/. [Accessed: 07-Apr-2020].

[19] I. F. Antika, “Karakteristik Anoda Baterai Lithium-Ion yang dibuat dengan Metoda

Spraying Berbasis Binder CMC,” Jurnal Ilmu dan Inovasi Fisika, vol. 3, no. 2, pp. 114– 121, 2019.

[20] B. Diouf and R. Pode, “Potential of lithium-ion batteries in renewable energy,” Renewable

Energy, vol. 76, pp. 375–380, 2015.

[21] Apipah, “Pengertian Elektroda; Jenis dan contoh, Penggunaan,” Pengertian Elektroda;

Jenis dan contoh, Penggunaan (Kimia) | Usaha321.net. [Online]. Available: https://usaha321.net/pengertian-elektroda.html. [Accessed: 07-Apr-2020].

[22] T. B. Reddy, and D. Linden, Lindens Handbook of batteries. New York: McGraw-Hill,

2008.

[23] K. Min, S.-W. Seo, Y. Y. Song, H. S. Lee, and E. Cho, “A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials,” Physical Chemistry Chemical Physics, vol. 19, no. 3, pp. 1762–1769, 2017.

[24] “METALURGI SERBUK.” [Online]. Available:

http://nurun.lecturer.uin-malang.ac.id/wp-content/uploads/sites/7/2013/03/ME\TALURGI-SERBUK.pdf. [Accessed: 11-Apr-2020].

[25] Kusumaisny39, “23 Sintering Proses sintering adalah suatu proses pemadatan dari

sekumpulan,” [Online]. Available:

https://www.coursehero.com/file/p4k0jke/23-Sintering-Proses-sintering-adalah-suatu-proses-pemadatan-dari-sekumpulan/. [Accessed: 12-Apr-2020].

[26] A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified Scherrer Equation to Estimate

More Accurately Nano-Crystallite Size Using XRD,” World Journal of Nano Science and Engineering, vol. 02, no. 03, pp. 154–160, 2012.

[27] M. S. Khan, A. Asif, S. Khawaldeh, and A. Tekin, “Dopamine Detection using

Mercaptopropionic Acid and Cysteamine for Electrodes Surface Modification,” Jun. 2018.

[28] Z. Huang, Z. Wang, Q. Jing, H. Guo, X. Li, and Z. Yang, “Investigation on the effect of

Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material,” Electrochimica Acta, vol. 192, pp. 120–126, 2016.

[29] A. I. Vogel and G. Svehla, Vogel's textbook of macro and semimicro qualitative inorganic

analysis. London: Longman, 1979.

[30] X. Cao, “Synthesis and Characterization of LiNi1/3Co1/3Mn1/3O2 as Cathode Materials

for Li-Ion Batteries via an Efficacious Sol- Gel Method,” International Journal of Electrochemical Science, pp. 5267–5278, 2016.

[31] A. Habibi, M. Jalaly, R. Rahmanifard, and M. Ghorbanzadeh, “The effect of calcination

conditions on the crystal growth and battery performance of nanocrystalline Li(Ni1/3Co1/3Mn1/3)O2 as a cathode material for Li-ion batteries,” New Journal of Chemistry, vol. 42, no. 23, pp. 19026–19033, 2018.

[32] J. Liu, W. Qiu, L. Yu, H. Zhao, and T. Li, “Synthesis and electrochemical characterization

of layered Li(Ni1/3Co1/3Mn1/3)O2 cathode materials by low-temperature solid-state reaction,” Journal of Alloys and Compounds, vol. 449, no. 1-2, pp. 326–330, 2008.

[33] L. Peng, Y. Zhu, U. Khakoo, D. Chen, and G. Yu, “Self-assembled LiNi1/3Co1/3Mn1/3O2

LAMPIRAN

Lampiran 1. Gantt Chart perencanaan penelitian TA

No Kegiatan Bulan

Des Jan Feb Mar Apr Mei Jun Jul Agu Sep

1 Studi Literatur

2 Persiapan alat

dan bahan

3 Sintesis NCM

622 (trial)

4 Sintesis logam

karbonat

5 Sintesis NCM

622 & 811

6 Karakterisasi

NCM 622 & 811

7 Penyusunan

laporan TA

Dokumen terkait