• Tidak ada hasil yang ditemukan

Bab 5 Kesimpulan dan Saran

5.2 Saran

Masih banyak kekurangan yang dimiliki oleh program ini, salah satunya adalah keterbatasan menggunakan jenis gambar untuk diproses. Dimana gambar yang diproses harus dalam bentuk Bitmap, untuk itu diharapkan kepada para pembaca semuanya untuk bisa mengembangkan kembali seperti mengembangkan jumlah format gambar yang dapat diproses nantinya, seperti menggunakan gambar yang akan dideteksi berupa JPG, TIF dan sebagainya, serta dapat mengembangkan kekurangan-kekurangan lain yang ada diaplikasi ini, agar aplikasi ini menjadi sesuai dengan yang diharapkan menjadi lebih baik.

BAB 2

LANDASAN TEORI

2.1 Pengenalan Citra

Citra, menurut kamus Webster, adalah suatu representasi, kemiripan, atau imitasi dari suatu objek atau benda, sedangkan secara harfiah, citra (image) adalah gambar pada bidang dwimatra (dua dimensi). Citra merupakan fungsi menerus (continue) dari intensitas cahaya pada bidang dwimatra. Sumber cahaya menerangi sebuah objek, dan objek tersebut memantulkan kembali sebagian dari berkas cahayanya. Pantulan cahaya ini ditangkap oleh oleh alat-alat optik, misalnya mata pada manusia, kamera, pemindai (scanner), dan sebagainya, sehingga bayangan objek yang disebut citra tersebut terekam. Citra juga merupakan bentuk dari dua dimensi untuk dijadikan fisik nyata menjadi tiga dimensi. Dalam perwujudannya, citra dibagi menjadi dua yaitu still images (citra diam) dan moving images (citra bergerak). Citra diam adalah citra tunggal yang tidak bergerak, sedangkan citra bergerak adalah rangkaian citra diam yang ditampilkan secara beruntun (sekuensial) sehingga memberi kesan pada mata kita sebagai gambar yang bergerak.

Gambar atau citra dapat disebut sebagai sebuah bidang datar yang mempunyai fungsi dua dimensi f(x, y), dimana nilai x dan y merupakan koordinat pada sebuah bidang datar dan amplitudo dari f dapat disebut sebagai intensitas atau gray-level atau biasa disebut tingkat ke abu-abuan dari sebuah gambar pada koordinat x dan y.

Citra sebagai keluaran dari suatu sistem perekaman data dapat bersifat : 1. Optik berupa foto.

2. Analog berupa sinyal video seperti gambar pada monitor televisi. 3. Digital yang dapat langsung disimpan pada media penyimpan magnetik. Citra juga dapat dikelompokkan menjadi 2 yaitu :

1. Citra tampak ( foto, gambar, lukisan ) apa yang nampak di layar monitor / televisi, hologram dan lain-lain.

2. Citra tidak tampak (data foto / gambar dalam file) citra yang direpresentasikan dalam fungsi matematis.

Citra digital adalah citra yang disimpan dalam format digital (dalam bentuk file). Hanya citra digital yang dapat diolah menggunakan komputer. Jenis citra lain jika akan diolah dengan komputer harus diubah dulu menjadi citra digital.

1. Pencitraan (imaging) adalah kegiatan mengubah informasi dari citra tampak/citra non digital menjadi citra digital. Beberapa alat yang dapat digunakan untuk pencitraan adalah : scanner, kamera digital, kamera sinar-x/sinar infra merah, dll

2. Pengolahan Citra adalah kegiatan memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia / mesin (komputer). Inputannya adalah citra dan keluarannya juga citra tapi dengan kualitas lebih baik dari pada citra masukan misal citra warnanya kurang tajam, kabur (blurring), mengandung noise (misal bintik-bintik putih), dan lain - lain sehingga perlu ada pemrosesan untuk memperbaiki citra karena citra tersebut menjadi sulit diinterpretasikan karena informasi yang disampaikan menjadi berkurang.

3. Analisis Citra adalah kegiatan menganalisis citra sehingga menghasilkan informasi untuk menetapkan keputusan biasanya didampingi bidang ilmu kecerdasan buatan /AI yaitu pengenalan pola (pattern recognition) menggunakan jaringan syaraf tiruan, logika fuzzy, dll).

Gambar 2.1 Analisis Citra

Dalam ilmu komputer sebenarnya ada 3 bidang studi yang berkaitan dengan citra, tapi tujuan ketiganya berbeda, yaitu :

1. Grafika Komputer

Adalah proses untuk menciptakan suatu gambar berdasarkan deskripsi obyek maupun latar belakang yang terkandung pada gambar tersebut.

a. Merupakan teknik untuk membuat gambar obyek sesuai dengan obyek tersebut di alam nyata (realism).

b. Bertujuan menghasilkan gambar / citra ( lebih tepat disebut grafik / picture ) dengan primitif - primitif geometri seperti garis, lingkaran, dan sebagainya.

c. Primitif - primitif geometri tersebut memerlukan data deskriptif untuk melukis elemen-elemen gambar. Data deskriptif : koordinat titik, panjang garis, jari-jari lingkaran, tebal garis, warna, dsb.

d. Grafika komputer berperan dalam visualisasi dan virtual reality.

Data Deskriptif Citra

2. Pengolahan Citra

Operasi-operasi pada pengolahan citra diterapkan pada citra bila :

1. Perbaikan atau memodifikasi citra dilakukan untuk meningkatkan kualitas penampakan citra / menonjolkan beberapa aspek informasi yang terkandung dalam citra (image enhancement) contoh : perbaikan kontras gelap / terang, perbaikan tepian objek, penajaman, pemberian warna semu, dan lain – lain.

2. Adanya cacat pada citra sehingga perlu dihilangkan / diminimumkan (image

restoration) contoh : penghilangan kesamaran (debluring) citra tampak kabur karena

pengaturan fokus lensa tidak tepat / kamera goyang, penghilangan noise.

3. Elemen dalam citra perlu dikelompokkan, dicocokan atau diukur (image

segmentation). Operasi ini berkaitan erat dengan pengenalan pola.

4. Diperlukannya ekstraksi ciri-ciri tertentu yang dimiliki citra untuk membantu dalam pengidentifikasian objek (image analysis). Proses segementasi kadang kala diperlukan untuk melokalisasi objek yang diinginkan dari sekelilingnya. Contoh : pendeteksian tepi objek.

Grafika

Komputer

5. Sebagian citra perlu digabung dengan bagian citra yang lain (image reconstruction)

contoh : beberapa foto rontgen digunakan untuk membentuk ulang gambar organ tubuh.

6. Citra perlu dimampatkan (image compression) contoh : suatu file citra berbentuk BMP berukuran 258 KB dimampatkan dengan metode JPEG menjadi berukuran 49 KB.

7. Menyembunyikan data rahasia (berupa teks / citra) pada citra sehingga keberadaan data rahasia tersebut tidak diketahui orang (steganografi & watermarking)

Citra Citra

3. Pengenalan Pola

Pengelompokan pola adalah mengelompokkan data numerik dan simbolik (termasuk citra) secara otomatis oleh mesin ( computer ). Tujuan pengelompokkan adalah untuk mengenali suatu objek di dalam citra. Manusia bisa mengenali objek yang dilihatnya karena otak manusia telah belajar mengklasifikasi objek-objek di alam sehingga mampu membedakan suatu objek dengan objek lainnya. Kemampuan sistem visual manusia yang dicoba ditiru oleh mesin. Komputer menerima masukan berupa citra objek yang akan diidentifikasi, memproses citra tersebut dan memberikan keluaran berupa informasi / deskripsi objek di dalam citra.

Citra Informasi/deskripsi objek

2.2 Elemen Pada Citra

Citra mengandung sejumlah elemen dasar. Elemen dasar tersebut dimanipulasi dalam pengolahan citra, elemen tersebut adalah :

1. Citra Warna ( True Color ). Setiap titik (pixel) pada citra warna mewakili warna yang merupakan kombinasi dari tiga warna dasar yaitu merah hijau biru citra RGB

Pengolahan Citra

Pengenalan Pola

(Red Green Blue) Setiap warna dasar mempunyai intensitas sendiri dengan nilai maksimum 255 (8 bit) Red = warna minimal putih, warna maksimal merah Green = warna minimal putih, warna maksimal hijau Blue = warna minimal putih, warna maksimal biru Misal warna kuning = kombinasi warna merah dan hijau sehingga nilai RGB-nya = 255 255 0 Warna ungu muda = kombinasi warna merah dan biru sehingga nilai RGB-nya = 150 0 150 Contoh : bisa dilihat di Photoshop

Gambar 2.2 RGB

Jadi setiap titik pada citra warna membutuhkan data 3 byte. Jumlah kemungkinan kombinasi warna 224 = lebih dari 16 juta warna 24 bit disebut true color karena dianggap mencakup semua warna yang ada.

Gambar 2.3 Citra Warna

Ada perbedaan warna dasar untuk cahaya (misal display di monitor komputer) & untuk cat/tinta (misal cetakan di atas kertas). Citra cahaya menggunakan warna dasar RGB = Red Green Blue Citra cat menggunakan warna dasar CMY = Cyan Magenta Yellow.

2. Citra Warna Berindeks. Setiap titik (pixel) pada citra warna berindeks mewakili indeks dari suatu tabel warna yang tersedia (biasanya disebut palet warna). Keuntungan pemakaian palet warna adalah kita dapat dengan cepat memanipulasi warna tanpa harus mengubah informasi pada setiap titik dalam citra.

Gambar 2.4 Citra Warna Berindex

Keuntungan yang lain, penyimpanan lebih kecil. Setting warna display pada MS Window biasanya format 16 colors, 256 colors, high color, true color, yang merupakan citra warna berindeks dengan ukuran palet masing-masing 4 bit, 8 bit, 16 bit dan 24 bit.

3. Citra Kecerahan (brightness). Kecerahan disebut juga intensitas cahaya. Kecerahan pada sebuah piksel (titik) di dalam citra bukanlah intensitas yang rill, tetapi sebenarnya adalah intensitas rerata dari suatu area yang melingkupinya.

4. Citra Kontras. Kontras menyatakan sebaran terang dan gelap di dalam sebuah gambar. Citra dengan kontras rendah dicirikan oleh sebagian besar komposisi citranya adalah terang atau sebagian besar gelap. Pada citra dengan kontras yang baik, komposisi gelap dan terang tersebar secara merata.

5. Citra Kontur. Kontur adalah keadaan yang ditimbulkan oleh perubahan intensitas pada piksel yang bertetangga. Karena adanya perubahan intensitas, mata manusia dapat mendeteksi tepi objek di dalam citra.

6. Citra Bentuk (shape). Bentuk adalah properti intrinsik dari objek tiga dimensi, dengan pengertian bahwa shape merupakan properti intrinsik utama untuk sistem visual manusia. Pada umumnya citra yang dibentuk oleh mata merupakan citra

dwimatra (dua dimensi), sedangkan objek yang dilihat umumnya berbentuk trimatra

(tiga dimensi). Informasi bentuk objek dapat diekstraksi dari citra pada permulaan prapengolahan dan segmentasi citra.

7. Citra Tekstur. Tekstur diartikan sebagai distribusi spasial dari derajat keabuan di dalam sekumpulan piksel yang bertetangga. Jadi tekstur tidak dapat didefinisikan untuk sebuah piksel. Sistem visual manusia menerima informasi citra sebagai suatu kesatuan. Resolusi citra yang diamati ditentukan oleh skala pada mana tekstur tersebut dipersepsi.

8. Citra Biner atau Monokrom. Adalah citra jenis ini, setiap titik atau piksel hanya bernilai 0 tau 1. Dimana setiap titik membutuhkan media penyimpanan sebesar 1 bit. Bambar 2.1 merupakan contoh citra biner monokrom. Citra biner merupakan citra yang telah melalui proses pemisahan piksel-piksel berdasarkan derajat keabuan yang dimiliki. Citra biner adalah citra yang hanya direpresentasikan nilai tiap pikselnya dalam satu bit (satu nilai binary). Banyaknya warna yang terdapat pada citra biner adalah dua, yaitu hitam dan putih. Salah satu contoh dari gambar biner dapat dilihat pada Gambar 2.1. Dibutuhkan satu bit di memori untuk menyimpan kedua warna ini. Setiap piksel pada citra bernilai 0 untuk hitam dan 1 untuk putih (Hestiningsih, Idhawati. 2008).

Gambar 2.5 Citra Biner

9. Citra Grayscale (skala keabuan). Citra warna grayscale menggunakan warna tingkatan warna abu-abu. Warna abu - abu merupakan satu - satunya warna pada ruang RGB dengan komponen merah, hijau, dan biru mempunyai intensitas yang sama. Banyaknya warna yang ada tergantung pada jumlah bit yang disediakan di memori untuk menampung kebutuhan warna ini. Salah satu contoh gambar grayscale dapat dilihat pada Gambar 2.2. Contoh, citra dengan skala keabuan empat bit maka

jumlah kemungkinan warnanya adalah 24 = 16 warna dengan kemungkinan warna 0 (min) sampai 15 (max) (Hestiningsih, Idhawati., 2008).

Gambar 2.6 Citra Grayscale

10.Waktu dan Pergerakan. Respon suatu sistem visual tidak hanya berlaku pada faktor ruang, tetapi juga pada faktor waktu. Sebagai contoh, bila citra-citra diam ditampilkan secara cepat, akanberkesan melihat citra yang bergerak.

11.Deteksi dan Pengenalan. Dalam mendeteksi dan mengenali suatu citra, ternyata tidak hanya sistem visual manusia saja yang bekerja, tetapi juga ikut melibatkan ingatan dan daya pikir manusia.

2.3 Histogram Tingkat Keabuan (Gray level Histogram)

Informasi suatu citra dapat diwakili oleh histogram Histogram adalah suatu fungsi yang menunjukkan jumlah titik yang ada dalam suatu citra untuk setiap tingkat keabuan. Sumbu X (absis) menunjukkan tingkat warna Sumbu Y (ordinat) menunjukkan frekuensi kemunculan titik. Kegunaanya adalah :

1. Penentuan parameter digitasi dalam proses pencitraan perlu melihat apakah tingkat warna telah dipakai sesuai yang dibutuhkan. Contoh : tingkat keabuan dengan 8 bit apakah sudah memakai dari tingkat 0 sampai 256 warna tingkat keabuan.

2. Pemilihan batas ambang (threshold). Biasa digunakan untuk mengukur penonjolan objek dalam citra terhadap latar belakangnya termasuk dalam teknik pengambangan (thresholding).

3. Pengenalan / pencocokan citra adalah citra yang telah diubah / diupdate akan mempunyai histogram yang berbeda.

Gambar 2.7 Citra Beserta Histogramnya

2.4 Konversi Citra True Color menjadi Citra Keabuan (Grayscale) Operasi konversi citra true color ke keabuan dengan rumus :

Bisa juga dengan memberi bobot (w) pada RGB karena mata manusia lebih sensitif pada warna hijau, kemudian merah, terakhir biru. Ko = wr Ri + wg Gi + wb Bi berdasarkan NTSC (National Television System Committee), dimana :

wr = 0.299 wg = 0.587 wb = 0.144

Gambar 2.8 True Color Menjadi Grayscale

2.5 Pengambangan (Thresholding)

Operasi pengambangan digunakan untuk mengubah citra dengan format skala keabuan, yang mempunyai kemungkinan nilai lebih dari 2 ke citra biner yang memiliki 2 buah nilai (yaitu 0 dan 1).

1. Pengambangan Tunggal adalah memiliki sebuah nilai batas ambang Fungsi GST-nya 2. Pengambangan Ganda adalah memiliki ambang bawah dan ambang atas. Dilakukan

2.6 Representasi Citra Digital

Citra digital merupakan fungsi intensitas cahaya f (x,y), dimana harga x dan y merupakan koordinat spasial dan harga fungsi tersebut pada setiap titik (x,y) merupakan tingkat kecemerlangan citra pada titik tersebut. Citra digital adalah citra f (x,y) dimana dilakukan diskritisasi koordinat spasial (sampling) dan diskritisasi tingkat kecemerlangannya / keabuan (kwantisasi). Citra digital merupakan suatu matriks dimana indeks baris dan kolomnya menyatakan suatu titik pada citra tersebut dan elemen matriksnya ( yang disebut sebagai elemen gambar / piksel / pixel / picture element / pels ) menyatakan tingkat keabuan pada titik tersebut. Citra digital dinyatakan dengan matriks berukuran N x M (baris/tinggi = N, kolom/lebar = M)

Gambar 2.9 Representasi Citra

1. Format Citra adalah citra digital biasanya berbentuk persegi panjang, secara visualisasi dimensi ukurannya dinyatakan sebagai lebar x tinggi ukurannya dinyatakan dalam titik atau piksel ( pixel = picture element ) ukurannya dapat pula dinyatakan dalam satuan panjang (mm atau inci = inch). Resolusi adalah banyaknya titik untuk setiap satuan panjang (dot per inch). Makin besar resolusi makin banyak titik yang terkandung dalam citra, sehingga menjadi lebih halus dalam visualisasinya.

2. Resolusi Citra adalah resolusi spasial dan resolusi kecemerlangan, berpengaruh pada besarnya informasi citra yang hilang. Resolusi spasial halus / kasarnya pembagian kisi-kisi baris dan kolom. Transformasi citra kontinue ke citra digital disebut digitalisasi (sampling). Misal hasil digitalisasi dengan jumlah baris 256 dan jumlah kolom 256 resolusi spasial 256 x 256. Resolusi kecemerlangan (intensitas / brightness) = halus / kasarnya pembagian tingkat kecemerlangan. Transformasi data analog yang bersifat kontinue ke daerah intensitas diskrit disebut kuantisasi. Bila intensitas piksel berkisar antara 0 dan 255 resolusi kecemerlangan citra adalah 256

Defenisi citra menurut (Gonzalez, 2002) adalah suatu fungsi dua dimensi f (x,y) dimana x dan y adalah koordinat parsial dari setiap titik pada citra, serta nilai fungsi f pada kordinat (x,y) merupakan nilai intensitas atau gray level pada titik tersebut. Citra digital merupakan citra dengan nilai x , y, dan f yang berhingga dan diskrit, dimana kegiatan dan pemrosesannya dialakukan dengan komputer digital. Setiap pasangan nilai dan lokasi koordinat merupakan element pembentuk citra digital yang disebut dengan piksel.

Terdapat tiga jenis range nilai yang umumnya dipakai dalam mempresentasikan besarnya intensitas nilay garay level citra dalam matriks, yaitu :

1. Representasi data double dengan nilai jangkauan antara 0-1

2. Representasi data integer 8 bit dengan nilai jangkauan antara 0-255 dan 3. Representasi data integer 16 bit dengan nilai jangkauan antara 0-65535

Nilai minimal (0) merupakan representasi dari warna hitam, sedangkan nilai maksimal dari setiap jenis jangkauan data merupakan representasi dari warna putih. Berikut ini adalah cara mengkonversi ketiga jenis representasi data diatas.

2.6.1 Konversi Data Double Menjadi Integer

Untuk mengubah representasi data double menjadi integer 8 bit, nilai piksel dikalikan dengan 255 dan dikenakan pembulatan :

f(x,y)= int[round( f(x,y)*255)] (1)

Untuk mengubah representasi data double menjadi integer 16 bit, nilai piksel dikalikan dengan 65535 dan dikenakan pembulatan :

f(x,y)’ =int[round( f(x,y)*65535] (2)

2.6.2 Konversi Data Integer Menjadi Double

Untuk mengubah representasi data integer 8 bit menjadi double, nilai piksel dibagi dengan 255 setelah format datanya diganti dengan double.

f(x,y)’ = double (� , ) (3)

Untuk mengubah representasi data integer 16 bit menjadi double, nilai piksel dibagi dengan 65535 setelah format datanya diganti dengan double .

f(x,y)’ = double (� , ) (4)

2.7 Pengolahan Citra

Pengolahan citra adalah kegiatan memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia / mesin (komputer). Inputannya adalah citra dan keluarannya juga citra tapi dengan kualitas lebih baik daripada citra masukan. Misal citra warnanya kurang tajam,kabur

(blurring), mengandung noise (misal bintik-bintik putih), dan lain - lain sehingga perlu ada pemrosesan untuk memperbaiki citra karena citra tersebut menjadi sulit diinterpretasikan sebab informasi yang disampaikan menjadi berkurang. Sedangkan pencitraan itu sendiri adalah kegiatan mengubah informasi dari citratampak /citra non digital menjadi citra digital. Beberapa alat yang dapat digunakan untuk pencitraan adalah scanner, kamera digital, kamera sinar-x/sinar infra merah, dan lain –lain.

Operasi-operasi pada pengolahan citra diterapkan pada citra apabila :

1. Perbaikan atau memodifikasi citra dilakukan untuk meningkatkan kualitas penampakan citra/menonjolkan beberapa aspek informasi yang terkandung dalam citra (image enhancement). Contoh : perbaikan kontras gelap/terang, perbaikan tepian objek,penajaman, pemberian warna semu, dan lain-lain.

2. Adanya cacat pada citra sehingga perlu dihilangkan / diminimumkan (imagerestoration). Contoh : penghilangan kesamaran (debluring) citra tampak kabur karena pengaturan fokus lensa tidak tepat / kamera goyang, penghilangan noise3. Elemen dalam citra perlu dikelompokkan, dicocokan atau diukur (imagesegmentation). Operasi ini berkaitan erat dengan pengenalan pola.

3. Diperlukannya ekstraksi ciri-ciri tertentu yang dimiliki citra untuk membantu dalam pengidentifikasian objek (image analysis). Proses segementasi kadangkala diperlukan untuk melokalisasi objek yang diinginkan dari sekelilingnya. Contoh : pendeteksian tepiobjek

4. Sebagian citra perlu digabung dengan bagian citra yang lain (imagereconstruction) contoh : beberapa foto rontgen digunakan untuk membentuk ulang gambar organ tubuh

5. Citra perlu dimampatkan (image compression). Contoh : suatu file citra berbentuk BMP berukuran 258 KB dimampatkan dengan metode JPEG menjadi berukuran 49 KB.

6. Menyembunyikan data rahasia (berupa teks / citra) pada citra sehingga keberadaan data rahasia tersebut tidak diketahui orang (steganografi & watermarking).

2.8 Metode Penggambaran

Image yang diciptakan berdasarkan dua macam tipe penggambaran yaitu : bitmap dan

seri garis, sedagkan penggambaran bitmap sebuah gambar dibuat berdasarkan kumpulan piksel didalam piranti penampil atau raster. Image digital disimpan dalam computer sebagai matriks. Ukuran matriks menentukan resolusi image. Sebagai contoh, jika sebuah image mempunyai ukuran 100 x 100 piksel, gray level 8 bit. Ini berarti 100 x 100 = 10.000 piksel mengambil 256 buah nilai. Pada umumnya nilai piksel dari image 8 bit bernilai antara 0 sampai 255, mewakili sekala keabuan dari hitam sampai putih. Jadi dalam sebuah image, kita perlu mengetahui ada 10.000 buah nilai untuk setiap 100 x 100 piksel dari image 100 x 100. Secara sistematis, sebuah image berukuran 100 x 100 dapat dijadikan vector berdimensi 10.000. Dimensi vector akan meningkat sejalan dengan semakin tinggi resolusi image.

Suatu image dibuat dengan menset posisi koordinat, intensitas, dan warna yang menyusun layar. Layar yang berfungsi sebagai media penampil dibayangkan sebagai potongan kisi-kisi atau grid atau lirik dari piksel-piksel. Nilai tingkat keabuan mempunyai harga integer, yaitu antara 0 sampai 2n – 1, dimana n adalah integer. Nilai 0 menunjukkan warna minimum yaitu warna putih.

2.9 Image Processing

Image processing adalah suatu metode yang digunakan untuk memproses atau memanipulasi

gambar dalam bentuk 2 dimensi (Gonzalez, 2002). Image processing adalah suatu bentuk pengolahan atau pemrosesan sinyal dengan input berupa gambar (image) dan ditransformasikan menjadi gambar lain sebagai keluarannya dengan teknik tertentu. Image processing dilakukan untuk memperbaiki kesalahan data sinyal gambar yang terjadi akibat transmisi dan selama akuisisi sinyal, serta untuk meningkatkan kualitas penampakan gambar agar lebih mudah diinterpretasi oleh sistem penglihatan manusia baik dengan melakukan manipulasi dan juga penganalisisan terhadap gambar. Image processingdapat juga dikatakan sebagai segala operasi untuk memperbaiki, menganalisa, ataumengubah suatu gambar. Konsep dasar pemrosesan suatu objek pada gambar menggunakan image processing diambil dari kemampuan indera penglihatan manusia yang selanjutnya dihubungkan dengan kemampuan otak manusia.

1. Image Enhancement (peningkatan kualitas gambar).

Pada operasi image processing yang pertama ini sering di kenal dengansebutan

pre-processing. Operasi image processing yang satu ini bertujuan untuk meningkatkan fitur

tertentu pada citra sehingga tingkat keberhasilan dalam pengolahan gambar berikutnya menjadi tinggi. Operasi ini lebih banyak berhubungan dengan penajaman dari fitur tertentu pada gambar. Selain untuk memperbaiki kontras diantara bidang-bidang yang terang dan yang gelap,metoda ini juga dapat menambahkan warna, menyaring ketidak seragaman sinyal kiriman yang membawa gambar, menghaluskan garis-garis yang bergerigi sehingga tampak lebih bersih, mempertajam sudut-sudut yang kabur dan mengkoreksi distorsi yang disebabkan alat optis atau tampilan. Untuk melakukan proses image enhancement, ada beberapa teknik yang dapat dicoba berdasarkan cakupan pada operasinya, diantaranya:

a. Operasi titik adalah dalam image enhancement dilakukan dengan memodifikasi histogram citra masukan agar sesuai dengan karakteristik yang diharapkan. Teknik yang dilakukan di bagi menjadi tiga bagian yaitu: Intensity Adjustment, Histogram

Equalization, Thresholding.

b. Operasi spasial adalah dalam pengolahan citra digital dilakukan melalui penggunaan suatu kernel konvolusi 2-dimensi.

c. Operasi transformasi adalah teknik ini dilakukan dengan cara mentransformasi citra asal ke dalam domain yang sesuai bagi proses enhancement, melakukan proses enhancement pada domain tersebut, mengembalikan citra ke dalam domain spasial untuk ditampilkan / diproses lebih lanjut

2. Image Restoration ( pemulihan gambar )

Operasi pemulihan gambar bertujuan untuk mengembalikan kondisi gambar yang telah rusak atau cacat (merekonstruksi gambar) yang sebelumnya telah diketahui menjadi gambar seperti pada kondisi awal, karena adanya gangguan yang menyebabkan penurunan kualitas gambar. 3. Image Compression (kompresi gambar)

Kompresi gambar bertujuan untuk meminimalkan jumlah bit yang diperlukan untuk merepresentasikan citra. Hal ini sangat berguna apabila ingin mengirimkan gambar berukuran besar. Gambar yang berukuran besar akan berpengaruh pada lamanya waktu pengiriman. Maka dari itu kompresi gambar akan memadatkan ukuran gambar menjadi lebih kecil dari

ukuran asli sehingga waktu yang diperlukan untuk transfer data jugaakan lebih cepat. Ada dua tipe utama kompresi data, yaitu kompresi tipe lossless dan kompresi tipe lossy. Kompresi tipe

lossy adalah kompresi dimana terdapat data yang hilang selama proses kompresi. Akibatnya

kualitas data yang dihasilkan jauh lebih rendah daripada kualitas data asli. Sementara itu, kompresi tipe lossless tidak menghilangkan informasi setelahproses kompresi terjadi,

Dokumen terkait