• Tidak ada hasil yang ditemukan

BAB V KESIMPULAN DAN SARAN

5.2. Saran

Saran untuk penelitian selanjutnya perlu dilakukan sekuensing ulang terhadap plasmid rekombinan untuk mendapatkan sekuen susunan fragmen gen lipase dan dapat analisis tingkat homologinya dengan lipase golongan HSL yang telah dipublikasi. Sehingga, dapat dilakukan penelitan selanjutnya untuk mendapatkan susunan gen lengkap penyandi lipase golongan HSL dengan

menggunakan Thermal Asymmetric Interlaced PCR dan primer arbitrary

degenerate serta dilakukan kloning gen hingga ekspresi untuk karakterisasi enzim lipase golongan HSL dari tanah limbah kelapa sawit.

DAFTAR PUSTAKA

Andualema, B., Gessesse, A., 2012. microbial lipase and their industrial applications: Review. Biotechnology 11, 100–118.

Biver, S., Vandenbol, M., 2012. Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. Journal of Industrial Microbiology & Biotechnology 40, 191-200 BPPT, 2014. Kepala BPPT dan Menristek Resmikan Pembangunan Bio Center

Plant dan Ground Breaking Unit Produksi Enzim di Gresik.

http://www.bppt.go.id. 15 Desember 2015

Brown, T.A., 2010. Gene Cloning & DNA Analysis: An Introduction 6th Edition, wiley-blackwell.

Cardenas, F., Alvarez, E., De Castro-Alvarez, M.S., Sanchez-Montero, J.M., Valmaseda, M., Elson, S.W., Sinisterra, J.V., 2001. Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. J. Mol. Catal. B, Enzym. 14, 111–123.

Dalmau, E., Montesinos, J.., Lotti, M., Casas, C., 2000. Effect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb. Technol. 26, 657–663.

Daniel, R., 2005. The Metagenomics of Soil. Nature3, 470–478.

Dutra, A., Paula, V., Kaori, K., Maltempi, E., Souza, D., Oliveira, F., Glogauer, A., Maria, G., Alexander, D., Krieger, N., 2015. Journal of Molecular Catalysis

B : Enzymatic Immobilization of LipC12 , a new lipase obtained by

metagenomics , and its application in the synthesis of biodiesel esters. Journal Mol. Catal. B, Enzym. 116, 45–51.

Elend, C., Schmeisser, C., Leggewie, C., Babiak, P., Carballeira, J.D., Steele, H.L., Reymond, J., Jaeger, K., Streit, W.R., 2006. Isolation and Biochemical

Characterization of Two Novel Metagenome-Derived Esterases. Applied and

environmental microbiology72, 3637–3645.

Fan, X., Niehus, X., Sandoval, G., 2012. Chapter 27 Lipases as Biocatalyst for Biodiesel Production. In: Lipases and Phospholipases: Methods and Protocols, Method in Molecular Biology. pp. 471–483.

Fjerbaek, L., Christensen, K. V, Norddahl, B., 2009. R EVIEW A Review of the Current State of Biodiesel Production Using Enzymatic Transesterification. Biotechnol. Bioeng. 102, 1298–1315.

51

Gabor, E.M., De Vries, E.J., Janssen, D.B., 2004. Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases. Environ. Microbiol. 6, 948–958. Gabor, E.M., Vries, E.J., Janssen, D.B., 2003. Efficient recovery of environmental

DNA for expression cloning by indirect extraction methods. FEMS Microbiol.

Ecol. 44, 153–163.

Gaoa, X.G., Cao, S.G., Zhang, K.C., 2000. Production, properties and application to nonaqueous enzymatic catalysis of lipase from a newly isolated Pseudomonas strain. Enzyme Microb. Technol. 27, 74–82.

Ghaly, A.E., Dave, D., Brooks, M.S., Budge, S., 2010. Production of Biodiesel by

Enzymatic Transesterification : Review. Am. J. Biochem. Biotechnol. 6, 54–

76.

Glick, B.R., Pasternak, J.J., Patten, C.L., 2012. Molecular Biotechnology Principles

and Applications of Recombinant DNA 4th Edition, ASM press.

Glogauer, A., Martini, V.P., Faoro, H., Couto, G.H., Müller-santos, M., Monteiro, R.A., Mitchell, D.A., Souza, E.M. De, Pedrosa, F.O., Krieger, N., 2011. Identification and characterization of a new true lipase isolated through metagenomic approach. Microb. Cell Fact.10, 54.

Gottschalk, G., Henne, A., Schmitz, R.A., Bo, M., Daniel, R., 2000. Screening of Environmental DNA Libraries for the Presence of Genes Conferring Lipolytic Activity on Escherichia coli. Applied and environmental microbiology 66, 3113–3116.

Gupta, R., Q., B., P., L., 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol.59, 15–32.

Habib, M.A.B., Yusoff, F.M., Phang, S.M., Ang, K.J., Mohamed, S., 1997. Nutritional values of chironomid larvae grown in palm oil mill effluent and algal culture. Aquaculture158, 95–105.

Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J., Goodman, R.M., 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol.5, R245–R249.

Hasan, F., Shah, A.A., Hameed, A., 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol.39, 235–251.

Hasan, F., Shah, A.A., Javed, S., Hameed, A., 2010. Enzymes used in detergents :

Lipases. African J. Biotechnol.9, 4836–4844.

Houde, A., Kademi, A., Leblanc, D., 2004. Lipases and Their Industrial Applications: An Overview. Appl. Biochem. Biotechnol.118, 155–170.

Hurt, R.A., Qiu, X., Wu, L., Roh, Y., Tiedje, J.M., Zhou, J., Hurt, R.A., Qiu, X., Wu, L., Roh, Y.U.L., Palumbo, A. V, 2001. Simultaneous Recovery of RNA

and DNA from Soils and Sediments. Appl. Environ. Microbiol.67.

Jaeger, K., Ransac, S., Dijkstra, B.W., Colson, C., 1994. Bacterial lipases. Annu. Rev. Microbiol.15, 29–63.

Jaeger, K.E., Dijkstra, B.W., Reetz, M.T., 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol.53, 315–51.

Jaeger, K.E., Eggert, T., Eipper, a., Reetz, M.T., 2001. Directed evolution and the creation of enantioselective biocatalysts. Appl. Microbiol. Biotechnol. 55, 519–530.

Jeon, J.H., Kim, J.-T., Kim, Y.J., Kim, H.-K., Lee, H.S., Kang, S.G., Kim, S.-J., Lee, J.-H., 2009. Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl. Microbiol. Biotechnol.81, 865–874. JunGang, L., KeGui, Z., WenJun, H., 2010. Cloning and biochemical characterization of a novel lipolytic gene from activated sludge metagenome, and its gene product. Microb. Cell Fact.9, 83.

Kakirde, K.S., Parsley, L.C., Liles, M.R., 2010. Size does matter: Application-driven approaches for soil metagenomics. Soil Biol. Biochem.42, 1911–1923. Kim, H.K., Oh, T., Lee, J., 2004. Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiology Letters 235, 349–355.

Lämmle, K., Zipper, H., Breuer, M., Hauer, B., Buta, C., Brunner, H., Rupp, S., 2007. Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning. J. Biotechnol.127, 575–592.

Lee, S.-W., Won, K., Lim, H.K., Kim, J.-C., Choi, G.J., Cho, K.Y., 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol.65, 720–726.

Liaw, R.-B., Cheng, M.-P., Wu, M.-C., Lee, C.-Y., 2010. Use of metagenomic approaches to isolate lipolytic genes from activated sludge. Bioresour. Technol.101, 8323–9.

Liu, D., Trodler, P., Eiben, S., Koschorreck, K., Müller, M., Pleiss, J., Maurer, S.C., Branneby, C., Schmid, R.D., Hauer, B., 2010. Rational design of pseudozyma antarctica lipase B yielding a general esterification catalyst. ChemBioChem

53

López-lópez, O., Cerdán, M.E., Siso, M.I.G., 2014. New Extremophilic Lipases and Esterases from Metagenomics. Current Protein and Peptide Science 445–455. Lorenz, P., Eck, J., 2005. Metagenomics and industrial applications. Nature3, 510–

516.

Martin-Laurent, F., Philippot, L., Hallet, S., Chaussod, R., Soulas, G., Catroux, G., 2001. DNA Extraction from Soils : Old Bias for New Microbial Diversity Analysis Methods DNA Extraction from Soils : Old Bias for New Microbial

Diversity Analysis Methods. Appl. Environ. Microbiol.67, 2354–2359. Metzger, J.O., Bornscheuer, U., 2006. Lipids as renewable resources: Current state

of chemical and biotechnological conversion and diversification. Appl. Microbiol. Biotechnol.71, 13–22.

Momsia, T., Momsia, P., 2013. A Review on Microbial Lipase-Versatile Tool For Industrial Applications. Int. J. life Sci. Biotechnol. pharma Res.2.

Obidzinski, K., 2013. FACT FILE – Indonesia world leader in palm oil production. http://news.trust.org/ 10 September 2015

Otten, L.G., Quax, W.J., 2005. Directed evolution: selecting today’s biocatalysts. Biomol. Eng.22, 1–9.

Paul, E.A., 2015. Soil Microbiology , Ecology , and Biochemistry : An Exciting

Present and Great Future Built on Basic Knowledge and Unifying Concepts, 4th ed, Soil Microbiology, Ecology and Biochemistry. Elsevier Inc.

Porteous, L.A., Armstrong, J.L., 1991. Current Microbiology Recovery of Bulk DNA from Soil by a Rapid , Small-Scale Extraction Method22, 345–348.

Quail, M.A., 2010. DNA : Mechanical Breakage. Encycl. Life Sci. 1–5.

Ranjan, R., Grover, A., Kapardar, R.K., Sharma, R., 2005. Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem. Biophys. Res. Commun.335, 57–65.

Ray, A., 2012. Application of Lipase in Industry. Asian J. Pharm. Tech2, 33–37. ResearchandMarket, 2015. Lipase Market by Source, Application, & by Geography

- Global Forecast to 2020. http://www.marketsandmarkets.com/ 27 Oktober 2015

Rupani, P., Singh, R., 2010. Review of current palm oil mill effluent (POME)

treatment methods: Vermicomposting as a sustainable practice. World Appl.

Sarrouh, B., Santos, T.M., Miyoshi, A., Dias, R., Azevedo, V., 2012. Up-To-Date Insight on Industrial Enzymes Applications and Global Market. J. Bioprocess. Biotech.S4, 1–10.

Schneegurt, M.A., Dore, S.Y., 2003. Direct Extraction of DNA from Soils for Studies in Microbial Ecology. Curr. Issues Mol. Biol. 1–8.

Schoemaker, H.E., 2003. Dispelling the Myths--Biocatalysis in Industrial Synthesis. Science 299, 1694–1697.

Sharma, D., Sharma, B., Shukla, A.K., 2011. Biotechnological Approach of Microbial Lipase: A review. Biotechnology10, 23–40.

Shi, P., Liu, W., Meng, K., Bai, Y., Wang, G., Zhan, Z., Yao, B., 2009. Lipase Diversity in Glacier Soil Based on Analysis of Metagenomic DNA Fragments and Cell Culture. J. Mol. Microbiol. Biotechnol.19, 888–897.

Simon, C., Daniel, R., 2009. Achievements and new knowledge unraveled by metagenomic approaches. Appl. Microbiol. Biotechnol.85, 265–276.

Smalla, K., Cresswell, N., Wolters, A., Eisas, J.D. Van, 1993. Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification.

Soberón-Chavez, G., Palmeros, B., 1994. Pseudomonas Lipases: Molecular Genetics and Potential Industrial Applications. Crit. Rev. Microbiol. 20, 95–

105.

Soleimaninanadegani, M., Manshad, S., 2014. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms. Int. Sch. Res. Not. 2014, 1–8.

Steele, H.L., Jaeger, K.-E., Daniel, R., Streit, W.R., 2009. Advances in Recovery of Novel Biocatalysts from Metagenomes. J. Mol. Microbiol. Biotechnol. 16, 25–37.

Sun, B., 2009. Identification of Novel Esterase from Metagenomic Library of Yangtze River. J. Microbiol. Biotechnol.19, 187–193.

Syrén, P.O., Lindgren, E., Hoeffken, H.W., Branneby, C., Maurer, S., Hauer, B., Hult, K., 2010. Increased activity of enzymatic transacylation of acrylates through rational design of lipases. J. Mol. Catal. B Enzym. 65, 3–10.

Tebbe, C.C., Vahjen, W., 1993. Interference of Humic Acids and DNA Extracted Directly from Soil in Detection and Transformation of Recombinant DNA from Bacteria and a Yeast. Appl. Environ. Microbiol 59, 2657–2665.

55

Tsai, Y., Olson, B.H., 1992. Rapid Method for Separation of Bacterial DNA from

Humic Substances in Sediments for Polymerase Chain Reaction. Appl.

Environ. Microbiol58, 2292–2295.

Uchiyama, T., Miyazaki, K., 2009. Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr. Opin. Biotechnol. 20, 616–

622.

Vakhlu, J., Kour, A., 2006. Yeast lipases: Enzyme purification, biochemical properties and gene cloning. Electron. J. Biotechnol.9, 69–85.

Verma, N., Thakur, S., Bhatt, A.K., 2012. Microbial Lipases : Industrial

Applications and Properties (Review). Int. Res. J. Biol. Sci.1, 88–92.

Wilson, K., Walker, J., 2010. Principles and Techniques of Biochemistry and Molecular Biology Seventh edition, Cambridge University Press.

Yan, Q., Duan, X., Liu, Y., Jiang, Z., Yang, S., 2016. Biotechnology for Biofuels Expression and characterization of a novel 1 , 3 ‑ regioselective cold ‑ adapted lipase from Rhizomucor endophyticus suitable for biodiesel synthesis. Biotechnol. Biofuels 1–13.

Yun, J., Kang, S., Park, S., Yoon, H., Kim, M.J., Heu, S., Ryu, S., 2004. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl. Environ. Microbiol. 70, 7229–7235. Zhao, X., Qi, F., Yuan, C., Du, W., Liu, D., 2015. Lipase-catalyzed process for

biodiesel production : Enzyme immobilization , process simulation and

optimization. Renew. Sustain. Energy Rev.44, 182–197.

Zhou, J., Bruns, M.A.N.N., Tiedje, J.M., 1996. DNA Recovery from Soils of Diverse Composition. Appl. Environ. Microbiol62, 316–322.

LAMPIRAN Lampiran 1. Pembuatan larutan stok

 Pembuatan larutan stok 0,1 M Tris-HCl pH 7.0 (Mr Tris = 121,14 gr/mol)

0,1 M =Mr Tris ×gram 100 ml1000 0,1 M =121,14 ×gram 100 ml1000 gram = 1,2114

Sebanyak 1,2114 gr Tris dilarutkan terlebih dahulu dalam 70 ml aquades lalu ditambahkan HCl 4N hingga pH 7.0 dan ditambahkan aquades kembali hingga 100 ml.

 Pembuatan larutan stok 0,1 M EDTA pH 8.0 (Mr EDTA = 292,24 gr/mol)

0,1 M =Mr EDTA ×gram 100 ml1000 0,1 M =292,24 ×gram 100 ml1000 gram = 2,9224

Sebanyak 2,9224 gr Tris dilarutkan terlebih dahulu dalam 70 ml aquades lalu ditambahkan NaOH 4N hingga pH 8.0 dan ditambahkan aquades kembali hingga 100 ml.

 Pembuatan larutan stok buffer fosfat pH 7.0

Dibuat larutan A yang mengandung 1 M NaH2PO4 (13,8 gr dalam

100 ml), dan larutan B yang mengandung 1 M Na2HPO4 (14,2 gr dalam 100

ml). Untuk mendapatkan bufer dengan pH 7.0, campurannya seperti tabel berikut.

A ( X ml ) B ( Y ml ) pH

39 61 7.0

 Pembuatan larutan stok glukosa 0,1 M (Mr Glukosa = 180,16 gr/mol)

0,1 M =Mr Glukosa ×gram 100 ml1000 0,1 M =180,16 ×gram 100 ml1000 gram = 1,8016

Sebanyak 1,8016 gr glukosa dilarutkan dengan 100 ml aquades. Lampiran 2. Pembuatan larutan denaturan

 10 mM Tris-HCl pH 7.0

V1 × M1 = V2 × M2

V1 × 0,1 M = 100 ml × 0,01 M

V1 = 10 ml (Tambahkan aquades hingga 100 ml)

 1 mM EDTA

V1 × M1 = V2 × M2

V1 × 0,1 M = 100 ml × 0,001 M

V1 = 1 ml (Tambahkan aquades hingga 100 ml)

 0,5% 2-Merkaptoetanol

Sebanyak 2,5 ml dari stok larutan 2% 2-merkaproetanol diencerkan dengan menambahkan aquades hingga 10 ml.

Lampiran 3. Pembuatan larutan buffer ekstraksi DNA

 100 mM buffer fosfat pH 7.0

V1 × M1 = V2 × M2

V1 × 1 M = 100 ml × 0,1 M

V1 = 10 ml (Tambahkan aquades hingga 100 ml)

 100 mM Tris-HCl pH 7.0  100 mM EDTA pH 8.0  1,5 M NaCl (Mr = 58,44 gr/mol) 1,5 M =Mr NaCl ×gram 100 ml1000 1,5 M =58,44 ×gram 100 ml1000 gram = 8,766

Sebanyak 8,766 gr NaCl dilarutkan dengan 100 ml aquades.

 1% CTAB

Sebanyak 1 gr CTAB dilarutkan dalam 100 ml aquades.

 2% SDS

Lampiran 4. Desain primer CLF dan CLR untuk amplifikasi fragmen gen lipase

Lampiran 5. Pembuatan larutan untuk isolasi plasmid

 Larutan I

o 50 mM glukosa

V1 × M1 = V2 × M2

V1 × 0,1 M = 100 ml × 0,05 M

V1 = 50 ml (Tambahkan aquades hingga 100 ml)

o 25 mM Tris-HCl pH 8.0

V1 × M1 = V2 × M2

V1 × 0,1 M = 100 ml × 0,025 M

V1 = 25 ml (Tambahkan aquades hingga 100 ml)

o 10 mM EDTA pH 8.0

V1 × M1 = V2 × M2

V1 × 0,1 M = 100 ml × 0,01 M

V1 = 10 ml (Tambahkan aquades hingga 100 ml)

 Larutan II

o 0,2 M NaOH

V1 × M1 = V2 × M2

V1 × 4 M = 100 ml × 0,2 M

V1 = 5 ml (Tambahkan aquades hingga 100 ml)

o 1% SDS

 Larutan III

o 5 M Na-asetat (Mr = 82,0343 gr/mol)

5 M =82,0343 ×gram 20 ml1000 gram = 8,2034

Dokumen terkait