• Tidak ada hasil yang ditemukan

BAB V KESIMPULAN DAN SARAN

5.2 Saran

Saran untuk penelitian selanjutnya adalah perlu dilakukan uji keasaman material hasil sintesis, sehingga diketahui tingkat keasaman Lewis maupun Brønsted katalis yang selanjutnya dapat dioptimalkan aplikasinya sebagai katalis.

71

Adamson. (1994). Physical Chemistry of Surface. John Wiley & Sons, New York.

Beck, J.S., Artuli, J.C., Rowth, W.J., Leonowiez, M.E., Kresge, C.T., Schmitt, K., D., Chu, T.W., Olson, D., H., Sheppard., E.W., Mc Cullen, S.B., Higgins, J.B., dan Sclenker, J.L. (1992). A New Family of Mesoporous Moleculer Sieves Prepared with Liquid Crystal Templates. American Journal of Chemical Society, 114, 10834-10843.

Blin, J., L., Otjacaques, C., Herrier, G., Su, Bao-Lian. (2001). Kinetic Study of MCM-41 Synthesis. International Journal of Inorganic Material, 3, 75-86.

Bux, H., Liang, F., Li,Y., Cravillon, J., Wiebcke, M. dan Caro, J. (2009). Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis. Journal of American Chemical Society, 131, 16000–16001.

Cho, H., Kim J., Kim, S., Ahn W. (2013). High Yield 1-L Scale Synthesis of ZIF-8 Via Sonochemical Route. Microporous and Mesoporous Materials, 169, 180-184.

Choi, J. S., Son, W., J., Kim, J., dan Ahn, W. S. (2008). Metal-Organic Framework MOF-5 Prepared by Microwave Heating: Factors to be Considered. Microporous and Mesoporous Materials. 116. 723-731.

Cravillon, J., Munzer, S., Lohmeier S-J., Feldhoff, A., Huber, K., Wiebcke, M. (2009). Rapid Room Temperature Synthesis and Characterization of Nanocrystal of a Prototypical 60 Zeolitic Imidazolate Framework. Chemistry Material,21, 1410-1412.

Cravillon, J., Nayuk, R., Springer, S., Feldhoff, A., Huber, K., Wiebcke, M.. (2011). Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved in Situ Static Light Scattering. ACS Publications, 23, 2130–2141.

Cravillon, J., Schruder, C.A., Bux, H., Rothkirch, A., Caro, J., Wiebcke, M. (2011) Formate Modulated Solvothermal.

Synthesis of ZIF-8 Investigated Using Time-Resolved In Situ X-ray Diffraction and Scanning Electron Microscopy.

The Royal Society of Chemistry. 12, 2086-2090.

Dahane, S., M., Martinez, Galera, M., E., Marchionni, M., M., Socias, Viciana, A., Derdour, M., D., Gil, Garcia. (2016). Mesoporous Silica Based MCM-41 as Solid-phase Extraction Sorbent Combined with Micro-Liquid Chromatography-Quadrupole-Mass Spectrometry for the Analisys of Pharmaceuticals in Water. Talanta, 152, 378-391.

Darmansyah, Hens, Saputra, Simparmin, Br, G., Lisa, Ardiana. (2016). Synthesis and Characterization of MCM-41 from Coal Fly Ash for Tapioca Waste Water Treatment. ARPN Journal of Engineering and Aplied Sciences, 7, 4772-4777. Fairen-Jimenez, D., Moggach, S., A., Wharmby, M.T., Wright, P.A., Parsons, S., Düren, T. (2011). Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations. Accounts of Chemical Research, 8900–

8902.

Feng, Q., I., Yanagisawa, K., & Yamasaki, N. (1998). Hydrothermal Soft Chemical Process for Synthesis of Manganese Oxides with Tunnel Structures. Journal of Porous Materials, 5, 153-162.

Furukawa, H., Miller, M., & Yaghi, O. (2007). Independent Verification of the Saturation Hydrogen Uptake in MOF-177 and Establishment of a Benchmark for Hydrogen Adsorption in Metaleorganic Frameworks. J Mater Chem,

17, 3197-204.

Furukawa, H., Cordova, K., E., O’Keeffe, M., Yaghi, O. M. 2013. The Chemistry and Applications of Metal Organic Frameworks. Science 341, 1230444.

Fajrin, Arfyanti. (2016). Sintesis UIO-66 pada Pendukung Silika Mesopori. Skripsi. Kimia ITS.

Gross, A., F., Sherman, E., Vajo, J.J., (2012). Aqueous Room Temperature Synthesis of Cobalt and Zinc Sodalite Imidazolate Framework. The Royal Society of Chemistry, 41, 5458–5460.

Haber, J., Block, J.H. dan Delmon B.. (1995). Manual of Methods and Procedures for Catalyst Characterizatio. Pure and Applied Chemistry, 67, 1257-1306.

Hapsari, Tia D.. (2015). Sintesis UIO-66 dengan penambahan Al2O3. Skripsi. Kimia ITS.

He, Ming, Jianfeng, Yao, Qiu, Liu, Kun, Wang, Fanyan, Chen, Huanting, Wang. (2014). Facile Synthesis Zeolitic Imidazolate Framework-8 from A Concentrated Aquoeous Solution. Microporous and Mesoporous Materials, 184, 55-60.

Hertäg, L., Bux, H., Caro, J., Chmelik, C., Remsungnen, T., Knauth, M. dan Fritzsche S. (2011). Diffusion of CH4 and H2 in ZIF-8. Journal of Membrane Science, 377, 36– 41. Hu, Xiaoyan, Xinlong, Yan, Min, Zhou, Sridhar, Komarmeni.

(2016). One-step Synthesis of Nanostructured Mesoporous ZIF-8/Silica Composites. Microporous and Mesoporous Materials, 219, 311-316.

Hui, K., S., C., Y., H., Chao. (2006). Synthesis of MCM-41from Coal Fly Ash by a Green Approach: Influence of Synthesis

pH. Journal of Hazardous Materials, 137, 1135-1148. Imaninsa, Novicha. (2016). Sintesis ZIF-8 dengan Penambahan

Al2O3 serta Aplikasinya Sebagai Katalis pada Reaksi Esterifikasi PFAD (Palm Fatty Acid Distillate). Skripsi. Kimia ITS.

Jiang H., Liu B., Lan Y., Kuratani K., Akita T., Shioyama H., Zong F. dan Xu Q. (2011). From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. Journal American Chemical Society, 133, 11854–11857

Karagiaridi, O., Lalonde, M., B., Bury, W., Sarjeant, A., A., Farha, O., K., dan Hupp, J., T. (2012). Opening Up ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers. Journal of American Chemical Society.

Khan, Abedin, Nazmul, Zubair, Hasan, Sung, Hwa, Jhung. (2013). Adsorptive Removal of Hazardous Materials Using

Metal-Organic Framework. Journal of Hazardous Materials, 244-245, 444-456.

Kida, K., Okita, M., Fujita, K., Tanaka, S., Miyake, Y. (2013) Formation of High Crystalline ZIF-8 in an Aqueous Solution. The Royal Society of Chemistry.

Kim, Man, Ji, Ja, Hun, Kwak, Shinae, Jun, Ryoung, Ryo. (1995). Ion Exchange and Thermal Stability of MCM-41. Journal Physic ChemistryI, 99, 16742-16747.

Kondo, A., Takanashi, S., & Maeda, K. (2012). New Insight Into Mesoporous Silica for Nano Metal–Organic Framework.

Journal of Colloid and Interface Science, 384, 110-115. Kuppler, R. J.m Timmons, D. J., Fang, Q.R., Li, J.R., Makal, T.A.,

Young, M.D., Yuan, D., Zhao, D., Zhuang, W., Zhou, H., C. (2009). Review: Potential Application of Metal Organic Framework. Coordination Chemistry Reviews, 253, 3042-3066.

Llewellyn, P., Bourrelly, S., Serre, C., Vimont, A., Daturi, M., & Hamon, L. (2008). High uptakes of CO2 and CH4 in

mesoporous metal organic frameworks 100 and MIL-101. Langmuir, 24, 45-50.

Li, C., P., Du, M. (2011). Role of solvents in coordination supramolecular systems. Chemical Communication 47, 5958–5972.

Li Rong-Jian, Julian Sculley, Hong-Chai Zhosu. (2012). Metal-Organic Frameworks for Separation. American Chemical Society, 869-932.

Li, P., Z., Aranishi, K., & Xu, Q. (2012). ZIF-8 Immobilized Nickel Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane. Chemical Communications, 48, 3173-3175.

Ma, Mingyan. (2011). Dissertasion : Preparation and Characterization of Metal Organic Framework for Biological Application. China : Fakultat Fur Chemie and Biochemie, Ruhr Universitat Bochum.

Mc Cash, E. M. 2000. Surface Chemistry. Oxford University Press, Cambridge.

Misran, H., Singh, R., Begu, S., Yarmo, M. A., (2007), “Prosessing

of Mesoporous Silica Materials (MCM-41) from Coal Fly

Ash”, Journal of Materials Processing Technology, 186, 8-13.

Nordin, M., H., A., N., A., F., Ismail., A., Mustafa, P., S., Goh, D., Rana and Matsuura. (2014). Aquoeous Room Temperature Synthesis of Zeolitic Imidazole Framework 8 (ZIF-8) with Various Concentrations of Triethylamine. Royal Society of Chemistry.

Noro S. (2013). Metal Organic Framework. In Comprehensive Inorganic Chemistry II (Second Edition) (eds. J. Reedjik and K. Poeppelmeir). Elseiver, Amsterdam. 45-71. Nguyen, L., T., L., Le, K., K., A., dan Phan, N., T., S. (2012). A

Zeolite Imidazolate Framework ZIF-8 Catalyst for Friedel-Crafts Acylation. Chinese Journal of Catalysis, 33, 688–

696.

Ordoñez, M., J., C., Balkus, K., J., Ferraris, J., P., dan Musselman, I., H. (2010). Molecular Sieving Realized with ZIF-8/Matrimid Mixed-matrix Membranes”, Journal of Membrane Science, 361, 28–37.

Ortiz-Melendez, H., I., L., A., Garcia-Cerda, Y., Olivares-Maldonado, G., Castruita, J., A., Mercado-Silva, Y., A., Perera-Mercado. (2012). Preparation of Spherical MCM-41 Molecular Sieve at Room temperature: Influence of Synthesis Conditions in the Structural Properties. Ceramic International, 38, 6353-6358.

Pan Y., Liu, Y., Zeng G., Zhao L., dan Lai Z. (2011). Rapid Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals in An Aqueous System. Chemical Communication, 47, 2071–2073.

Park, K., S., Ni, Z., Cote, A., P., Choi, J., Y., Huang, R., Uribe-

Romo, Fernando J., Chae, Hee K., O’Keeffe M., Yaghi,

Omar M. (2006). Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks. Proceeding of the National Academy of Sciences, 103, 27.

Park, S., J., Lee S.,Y. (2010). A Study on Hydrogen-storage Behaviors of Nickel-loaded Mesoporous MCM-41.

Journal Colloid Interface, 346, 194.

Phan, A., Doonan, C., J., Uribe-Romo, Fernando J., Knobler, C.B.

, O’Keeffe, M., Yaghi, O., M. (2010). Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 43, 58–67.

Pinto, M., Dias, S., Pires, J. (2013). Composite MOF Foams: The Example of UIO-66/Polyurethane. ACS Applied Material Interfaces, 5, 2360-2363.

Prasetyoko, D. (2014). Pentingnya mengetahui struktur dan sifat bahan. Surabaya : Institut Teknologi Sepuluh Nopember. Salam, Abdel, S., Mohamed, Mohamed, A., Beitha, Seham, A.,

Shaban, Ahmed, M., Elsabagh, Reda, M., Abd, El-Aal, Fathy, Y., El kady. (2015). Synthesis and Characterization of MCM-41 Supported Nano Zirconia Catalysts. Egyptian Journal of Petroleum, 24, 49-57.

Sayari, A.,Y., Yang. (1999). Expanding the Pore Size of MCM-41 Silicas: Use of Amines as Expanders in Direct Synthesis and Post Synthesis Procedures. Journal Physical Chemistry B, 103, 3651–3658.

Sibilia, P. (1996). Guide to Material Characterization and Chemical Analysis, Second Edition. John Willey-VCH, New York.

Silverstein, R., M., Webster, F., X., Kiemle, D., J. (2005). Spectrometric Identification of Organic Compound, Seventh Edition. John Wiley & Sons, Inc. New York. Sha, Zhou, Sun, J., Chan, H., Jaenicke, S., & and Wu, J. (2014).

Enhanced Photocatalytic Activity of the AgI/UiO-66(Zr) Composite for Rhodamine B Degradation under Visible-Light Irradiation. Chem Plus Chem.

Sha, Zhou, Sze, H., Chan, O., & Wu, J. (2015). Ag2CO3/UiO-66 (Zr) Composite with Enhanced Visible-Light Promoted Photocatalytic Activity for Dye Degradation. Journal of Hazardous Materials.

Shi, Qi, Zhaofeng Chen, Zhengzwei, Song, Prof. Jinping Li, Prof. Jinxiang Dong. (2010). Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors. Angewandte Chemie, 50, 672-675. Tari, Esmaeilian, Nesa, Azadeh, Tadjarodi, Javad, Tamnanloo, Shohreh Fatemi. (2016). Synthesis and Property Modification of MCM-41 Composited with Cu(BDC) MOF for Improvement of CO2 Adsorption Selectivity.

Journal of CO2 Utilization, 14, 126-134.

Tekkaya-Dundar, Eza, Yuda, Yurum, (2016). Mesoporous MCM-41 Material for Hydrogen Storage: A Short Review.

International Journal of Hydrogen Energy, 41, 9789-9795. Tsai, Chih-Wei, Ernie, H., G., Langner. (2016). The Effect of

Synthesis Temperature on the Particle Size of Nano-ZIF-8. Microporous and Mesoporous Materials, 221, 8-13. Venna, S. R., Jasinski, J. B. dan Carreon, M. A., (2010). Structural

Evolution of Zeolitic Imidazolate Framework-8. Journal of American Chemical Society, 132, 18030–18033. Wee, H., Lik, Tristan, Lescouet, Julia Fritsh, Fransesco Bonino,

Marcuse, Rose, Zhijun, Sui, Eva, Garrier, Dirk, Packet, Silvia Bordiga, Stefan, Kaskel, Moti, Herskowitz, David Farruseng, Johan, A. Martens. (2013). Synthesis of Monoglycerides by Esterification of Oleic Acid with Glycerol in Heterogeneous Catalytic Process Using Thin-Organic Framework Catalyst. Springer, 143, 356-363. West, A. R., (1989). Solid State Chemistry and Its Application.

John Willey & Sons, New York.

Wickenheisser, Martin, Tanja, Paul, Christoph, Janiak. (2016). Prospect of Monolithic MIL-MOF@poly(NIPAM) HIPE Composite as Water Sorption Material. Microporous and Mesoporous Materials 220. 258-269.

Xie, Z., Yang, J., Wang, J., Bai, J., Yin, H., Yuan, B., & Duan, C. (2012). Deposition of chemically modified α-Al 2 O 3 particles for high performance ZIF-8 membrane on a macroporous tube. Chemical Communications, 48, 5977-5979.

Yaghi, M., Omar, Kyo Sung Park, Zheng Ni, Adrien P. Cote, Jae Yong Choi, Rudan Huang, Fernando J. uribe-Romo, Hee

K. Chae, Michael O’Keeffe. (2006). Exceptional Chemical

and Thermal Stability of Zeolitic Imidazolate Frameworks.

PNAS, 103, 27.

Yaghi, O., & . and Chen, B. (2010). High Gas Adsorption Metal Organic Framework. The Regents of The University of Michigan.

Yan, Xinlong, Xiaoyan Hu, Sridhar, Komarneni. (2014). Facile Synthesis of Mesoporous MOF/Silica Composite. The Royal Society of Chemistry, 4, 5701-5704.

Yang, Min-Ji, Zhao-Pheng Qi, Yan-Shang, Kang, Qing Liu, Wei-Yin Sun. (2016). Effect of Additives on Morphology and Size and Gas Adsorption of Sumof-3 Microcrystals.

Microporous and Mesoporous Materials, 222, 27-32. Yao, J., Chen, R., Wang, K., Wang, H. (2013). Direct synthesis of

zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels. Microporous and Mesoporous Materials, 165, 200– 204.

Yao, Jianfeng, Ming He, Kun, Wang, Rizhi, Chen, Zhaoxiang, Zhoung, Huanting, Wang. (2013). High Yield Synthesis of Zeolitic Imidazolate Frameworks from Stoichiometric Metal and Ligand Prekursor Aqueous Solutions at Room Temperature. CrystEngComm, 15, 3601-3606.

Yu Ri-Lee, Jun Kim, Wha-Seung Ahn. (2013) Synthesis of Metal Organic Frameworks : A mini review. Chemical Engineering and Materials Research Information Center, 30, 1667-1680.

Zhang, Z., Xian, S., Xi, H., Wang H., dan Li, Z. (2011). Improvement of CO2 Adsorption on ZIF-8 Crystals Modified by Enhancing Basicity of Surface. Chemical Engineering Science, 66, 4878–4888.

Zhou, H., C., Long, J., R., dan Yaghi, O., M. (2012). Introduction

to Metal−Organic Frameworks”, Chemical Reviews, 112,

79 LAMPIRAN A SKEMA KERJA A.1 Sintesis ZIF-8

- Diaduk hingga larut 1,313 g

2-metil imidazol

15 mL DMF

Larutan 2-Metil imidazol 2,091 g

Zn(NO3)2.4H2O

15 mL DMF

- Diaduk hingga larut

Larutan Zn(NO3)2 Larutan 2-metil imidazol

- Diaduk selama 30 menit Campuran

- Dipanaskan dalam oven pada suhu 120oC selama 24 jam - Didinginkan pada suhu

kamar

Terbentuk 2 lapisan yang

terpisah

sempurna - Didekantasi

Cairan jernih Padatan putih

- Direndam dalam 15 mL metanol selama 24 jam ( 2 kali )

- Didekantasi

Padatan putih Cairan jernih

- Dipanaskan dengan oven pada suhu 70°C selama 2 jam - Dikarakterisasi

XRD FTIR SEM TGA Adsorpsi-Desorpsi N2

A.2 Sintesis ZIF-8 pada Pendukung Al-MCM-41

1,313 g 2-Metil Imidazol

15 mL DMF

Campuran 2-Metil imidazol , Al-MCM-41

- Diaduk selama 30 menit Al-MCM-41*

Keterangan:

* Pada penelitian ini dilakukan variasi massa Al-MCM-41 yaitu : 50 mg, 100 mg, 200 mg dan 400 mg

2,091 g Zn(NO3)2.4H2O

15 mL DMF

- Diaduk hingga larut

Larutan Zn(NO3)2 Campuran 2-Metil imidazol; Al-MCM-41

- Diaduk selama 2 jam Campuran

- Dipanaskan dalam oven pada suhu 120oC selama 24 jam - Didinginkan pada suhu kamar

Terbentuk 2 lapisan yang

terpisah

sempurna

- Didekantasi

Cairan jernih Padatan putih

- Direndam dalam 15 mL metanol selama 24 jam (2 kali) - Didekantasi

Padatan putih Cairan jernih

- Dipanaskan dalam oven pada suhu 70°C selama 2 jam - Dikarakterisasi

XRD FTIR SEM TGA Adsorpsi-Desorpsi N2

LAMPIRAN B

PERHITUNGAN MASSA REAKTAN B.1 Komposisi massa reaktan ZIF-8

Diketahui :

Mr Zn(NO3)2.4H2O = 261,4472 g/mol Mr 2-metil imidazol = 82,1038 g/mol Mr N’N-dimetil formamida = 73,09 g/mol

ρN’N-dimetil formamida = 0,948 g/mL a. Perhitungan massa logam, ligan dan pelarut

Jika digunakan 0,008 mol logam Zn(NO3)2.4H2O, maka massa logam Zn adalah

Massa Zn(NO3)2.4H2O = mol x Mr Zn(NO3)2.4H2O = 0,008 mol x 261,4472 g/mol Massa Zn(NO3)2.4H2O = 2,091 g

Perbandingan logam : ligan: pelarut adalah 1:2:24,31 Mol 2-metil imidazol = 2 x mol Zn(NO3)2.4H2O

= 2 x 0,008 mol Mol 2-metil imidazol = 0,016 mol

Massa 2-metil imidazol = mol x Mr 2-metil imidazol = 0,016 mol x 82,1038 g/mol Massa 2-metil imidazol = 1,313 g

Mol N’N-dimetil formamida = 24,31 x mol Mr Zn(NO3)2.4H2O = 24,31 x 0,008 mol

Mol N’N-dimetil formamida = 0,1944 mol

Massa N’N-dimetil formamida = mol x Mr DMF

= 0,1944 mol x 73,09 g/mol = 14,208 g

Volume N’N-dimetil formamida= massa

ρ = 14,208 g

0,948 g/mL

LAMPIRAN C

PERHITUNGAN KRISTALINITAS

Nilai derajat kristalinitas dihitung dengan perbandingan persentase total 3 puncak karakteristik suatu material dengan persentase total 3 puncak karakteristik suatu material yang memiliki nilai terbesar dengan asumsi 100%. Adapun contoh perhitungan derajat kristalinitas dari material ZIF-8/AM50 adalah sebagai berikut:

Diketahui:

Puncak karakteristik ZIF-8, yaitu : Puncak 1 = 22070,02

Puncak 2 = 1789,44

Puncak 3 = 8091,54

Total area dibawah kurva = 31951 Puncak karakteristik ZIF-8/AM50, yaitu : Puncak 1 = 16689,78

Puncak 2 = 566,12

Puncak 3 = 1689, 95 Total area dibawah kurva = 18945,85 Ditanya: Derajat kristalinitas ZIF-8/AM50 Jawab:

Kristalinitas ZIF-8/AM50 = Luas area dibawa kurva yang dicariLuas area dibawah kurva terbesar

x 100%

= 18945,85

31951

x 100%

LAMPIRAN D DIFRASKSI SINAR X

Gambar D.1 Difraktogram ZIF-8

Gambar D. 2 Difraktogram ZIF-8/AM50 Position [°2Theta] (Copper (Cu))

10 20 30 40 Counts 0 10000 20000 XRD

Position [°2Theta] (Copper (Cu))

10 20 30 40 Counts 0 5000 10000 15000 ZIF-8 Al-MCM-41 (50)

Gambar D.3 Difraktogram ZIF-8/AM100

Gambar D. 4 Difraktogram ZIF-8/AM200 Position [°2Theta] (Copper (Cu))

10 20 30 40 Counts 0 5000 10000 ZIF-8 Al-MCM-41 (100)

Position [°2Theta] (Copper (Cu))

10 20 30 40 Counts 0 5000 10000 15000 ZIF-8 Al-MCM-41 (200mg)

Gambar D.5 Difraktogram ZIF-8/AM400 Position [°2Theta] (Copper (Cu))

10 20 30 40 Counts 0 100 200 300 400 ZIF-8 Al-MCM-41 (400mg)

LAMPIRAN E HASIL FTIR

Gambar E.1 Spektrum dan data FTIIR ZIF-8

Peak Intensity Corr.

Intensity Base (H) Base (L) Area Corr. Area 1 420,5 33,501 13,899 441,71 401,21 15,752 2,597 2 692,47 37,261 6,88 711,76 673,18 14,758 1,054 3 758,05 33,895 10,869 815,92 711,76 40,266 3,855 4 839,06 43,967 0,132 844,85 815,92 10,254 0,014 5 952,87 41,493 1,746 960,58 931,65 10,61 0,16 6 995,3 33,853 8,9 1053,17 960,58 36,882 2,668 7 1089,82 39,805 2,462 1109,11 1070,53 14,831 0,403 8 1145,75 29,477 11,721 1161,19 1111,03 21,562 2,362 9 1176,62 36,56 4,993 1230,63 1161,19 26,517 0,618 10 1257,63 42,936 0,764 1269,2 1230,63 13,959 0,112 11 1307,78 32,644 10,57 1330,93 1274,99 22,376 2,025 12 1383,01 26,758 1,684 1390,72 1344,43 18,648 0,229 13 1423,51 30,732 4,277 1442,8 1392,65 24,12 1,558 14 1448,59 33,09 0,929 1531,53 1442,8 38,055 0,222 15 1583,61 40,037 2,285 1642,12 1546,96 29,581 0,765 16 1676,2 36,042 6,73 1728,28 1631,82 38,644 3,11 17 2929,04 40,296 1,877 2949,26 2881,75 25,591 0,404 18 3134,43 42,024 0,806 3147,93 3120,93 10,041 0,097 19 3481,63 42,504 0,117 3485,49 3477,77 2,862 0,005

LAMPIRAN E : SEM-EDX E.1 SEM-EDX ZIF-8

Peak Intensity Corr.

Intensity Base (H) Base (L) Area Corr. Area 1 420,5 23,803 17,899 449,43 401,21 25,566 4,034 2 694,4 32,68 5,002 715,61 688,61 11,005 0,088 3 759,98 28,201 14,811 825,56 717,54 44,732 5,208 4 837,13 43,091 0,324 858,35 827,49 11,214 0,046 5 942,97 40,208 2,968 962,51 935,51 10,031 0,24 6 995,3 29,322 9,194 1014,59 962,51 23,048 1,973 7 1089,82 32,382 2,733 1118,75 1070,53 22,232 0,556 8 1145,75 21,496 15,009 1163,11 1120,68 21,691 3,148 9 1178,55 31,075 6,382 1215,19 1163,11 22,817 1,052 10 1224,84 40,267 0,176 1276,92 1222,91 20,331 0,138 11 1309,71 29,568 14,26 1332,86 1278,85 21,968 2,662 12 1383,01 35,253 4,127 1392,65 1344,43 19,197 0,436 13 1425,44 27,117 5,813 1442,8 1392,65 25,626 2,203 14 1462,09 29,021 1,503 1504,53 1456,3 22,815 0,089 15 1583,61 38,254 1,74 1599,04 1556,61 17,147 0,373 16 1678,13 33,891 7,074 1726,35 1631,83 40,094 3,469 17 2929,97 38,269 1,811 2949,26 2887,53 24,699 0,362 18 3136,36 28,225 1,622 3147,93 3091,99 22,523 0,296 19 3462,34 36,796 0,043 3464,27 3460,41 1,674 0,001

LAMPIRAN F HASIL SEM-EDX

El AN Series [wt.%] Unn.C Norm. C [wt.%] Atom.C [at.%] Error [%]

N 7 K-series 35,34 31,51 40,03 5,5

Zn 30 K-series 33,80 30,14 8,20 1,0

C 6 K-series 27,74 24,73 36,64 3,4

O 8 K-series 15,26 13,61 15,13 2,7

Total : 112,14 100,00 100,00

El AN Series [wt.%] Unn.C Norm. C [wt.%] Atom.C [at.%] Error [%] Zn 30 K-series 39,27 34,73 10,01 1,1 N 7 K-series 34,25 30,29 40,75 5,2 C 6 K-series 23,93 21,17 33,20 2,9 O 8 K-series 15,11 13,37 15,74 2,5 Si 14 K-series 0,48 0,43 0,29 0,1 Al 13 K-series 0,02 0,02 0,01 0,0 Total : 113,07 100,00 100,00

LAMPIRAN G HASIL TGA G am bar G .1 T er m og ra m ZI F -8

G am bar G .2 T er m og ra m ZI F-8/ A M100

LAMPIRAN H ADSORPSI-DESORPSI N2

G.3 : Kurva Isoterm ZIF-8/AM100

“ Halaman sengaja dikosongkan”

97

BIODATA PENULIS

Penulis bernama lengkap Achmad Rizal Firmany, dilahirkan di Mojokerto, 1 0 J u li 1995, merupakan anak pertama dari tiga bersaudara. Penulis telah menempuh pendidikan formal, yaitu MI Ulumuddin (2001-2007), MTs Roudlotun Nasyi’in (2007-2010) dan SMA Negeri 1 Puri (2010-2013). Penulis diterima di Jurusan Kimia-ITS Surabaya melalui jalur SNMPTN undangan dan terdaftar dengan NRP 1413 100 010. Selama kuliah, penulis aktif di Badan Eksekutif Mahasiswa ITS (BEM ITS) sebagai staf ITS Education Care Center (IECC) (2014-2015), Badan Ekskutif Fakultas Matematika dan Ilmu Pengetahuan Alam (BEM FMIPA) sebagai staf ahli Badan Koordinasi (Bakor) Pemandu (2015-2016) dan Himpunan Mahasiswa Kimia ITS sebagai Kepala Departemen Sosial (2015-2016). Selain itu, Penulis merupakan Peserta aktif LKMM PraTD FMIPA ITS (2013), LKMM TD HIMKA ITS (2014), PP LKMM VIII FMIPA ITS (2014). LKMM TM FMIPA ITS (2015) dan Fasilitator LKMM TM ITS (2016) di ITS. Selama masa studi di ITS, penulis aktif dalam berprestasi dalam bidang keilmiahan. Adapun prestasi yang pernah dicapai adalah Juara 2 Olimpiade Sains Nasional (OSN) Pertamina Kategori Proyek Sains (2014). Di Jurusan Kimia ITS, Penulis mengambil bidang minat Kimia Material dan Energi dalam menyelesaikan Tugas Akhir jenjang S1 dibawah bimbingan Dra. Ratna Ediati MS. Ph.D. Segala kritik dan saran bagi Penulis dapat dihubungi melalui email arizal.firmany10@gmail.com.

Dokumen terkait