BAB VI PENUTUP
6.2 Saran
Adapun saran yang diberikan pada penulisan ini sebagai berikut:
1. Penelitian selanjutnya diharapkan dapat meningkatkan nilai akurasi pada hasil training model.
2. Diharapkan penelitian ini dapat dikembangkan dan diaplikasikan pada pengembangan Medical Image Analysis yang lainnya.
3. Membandingkan model arsitektur jaringan CNN lainnya untuk mengetahui hasil maksimal dari sistem prediksi ini.
4. Penelitian ini dapat dikembangkan kedalam sebuah aplikasi berbasis web maupun smartphone.
75
DAFTAR PUSTAKA
Ahmad, A. (2017). Mengenal Artificial Intelligence, Machine Learning, Neural Network, dan Deep Learning. June.
Akromunnisa, K., Hidayat, R., Informatika, J. T., & Adisucipto, J. L. (2019). KLASIFIKASI DOKUMEN TUGAS AKHIR (SKRIPSI) MENGGUNAKAN K-NEAREST NEIGHBOR. 4(1), 69–75.
Al-Waisy, A. S., Qahwaji, R., Ipson, S., & Al-Fahdawi, S. (2017). A multimodal biometrie system for personal identification based on deep learning approaches. Proceedings - 2017 7th International Conference on Emerging Security
Technologies, EST 2017, September, 163–168.
https://doi.org/10.1109/EST.2017.8090417
Alarcón-Soto, Y., Espasandín-Domínguez, J., Guler, I., Conde-Amboage, M., Gude-Sampedro, F., Langohr, K., Cadarso-Suárez, C., & Gómez-Melis, G. (2019). Data Science in Biomedicine. September. http://arxiv.org/abs/1909.04486
Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 281–305.
Bibin, D., Nair, M. S., & Punitha, P. (2017). Malaria Parasite Detection from Peripheral Blood Smear Images Using Deep Belief Networks. IEEE Access, 5, 9099–9108. https://doi.org/10.1109/ACCESS.2017.2705642
Botev, A., Lever, G., & Barber, D. (2017). Nesterov’s accelerated gradient and momentum as approximations to regularised update descent. Proceedings of the International Joint Conference on Neural Networks, 2017-May(2), 1899–1903. https://doi.org/10.1109/IJCNN.2017.7966082
Classification of Vessels in a Maritime Environment. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9475(1), 842–850. https://doi.org/10.1007/978-3-319-27863-6
Byrne, C., Farnham, B., Tokyo, S., Boston, B., Sebastopol, F., & Beijing, T. (2017). Development Workflows for Data Scientists. O’Reilly. http://oreilly.com/safari Center for Disease Control and Prevention. (2018). CDC Parasites.
https://www.cdc.gov/parasites/malaria/index.html
Chollet, F. (2018). Deep Learning with Python. In 2018 21st International Conference
on Information Fusion, FUSION 2018.
https://doi.org/10.23919/ICIF.2018.8455530
Das, D. K., Ghosh, M., Pal, M., Maiti, A. K., & Chakraborty, C. (2013). Machine learning approach for automated screening of malaria parasite using light
microscopic images. Micron, 45, 97–106.
https://doi.org/10.1016/j.micron.2012.11.002
Dineva, K., & Atanasova, T. (2018). Osemn Process for Working Over Data Acquired By Iot. 7(13), 47–53.
Dinov, I. D. (2018). Data science and predictive analytics: Biomedical and health applications using R. In Data Science and Predictive Analytics: Biomedical and Health Applications using R. https://doi.org/10.1007/978-3-319-72347-1
Dong, Y., Jiang, Z., Shen, H., David Pan, W., Williams, L. A., Reddy, V. V. B., Benjamin, W. H., & Bryan, A. W. (2017). Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells. 2017 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2017, 101–104. https://doi.org/10.1109/BHI.2017.7897215
77
UIN Syarif Hidayatullah Jakarta
Eka Putra, W. S. (2016). Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101. Jurnal Teknik ITS, 5(1). https://doi.org/10.12962/j23373539.v5i1.15696
Ezer, D., & Whitaker, K. (2019). Data science for the scientific life cycle. ELife, 8, 1– 10. https://doi.org/10.7554/eLife.43979
Gao, X., James-Reynolds, C., & Currie, E. (2018). Analysing TB severity levels with an enhanced deep residual learning - Depth-resnet. CEUR Workshop Proceedings, 2125.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2016-Decem, 770–778.
https://doi.org/10.1109/CVPR.2016.90
Kamal Hasan, M., Adiwijaya, & Said, A. F. (2019). Klasifikasi Citra Multi-Kelas Menggunakan Convolutional Neural Network. E-Proceeding of Engineering, 6(1), 2127–2136.
Kartika, A., Irawan, B., & Triyanto, D. (2016). Prediksi Wilayah Rawan Kebakaran Hutan dengan Metode Jaringan Syaraf Tiruan Propagasi Balik (Study Kasus : Daerah Kabupaten Kuburaya). Coding Jurnal Komputer Dan Aplikasi Untan, 4(2), 66–75.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386
Kumari, K., Bhardwaj, M., & Sharma, S. (2020). OSEMN Approach for Real Time Data Analysis. International Journal of Engineering and Management Research, 10(02), 107–110. https://doi.org/10.31033/ijemr.10.2.11
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436– 444. https://doi.org/10.1038/nature14539
lhncbc.nlm.nih.gov,. (n.d.). https://lhncbc.nlm.nih.gov/publication/pub9932
Maeda-Gutiérrez, V., Galván-Tejada, C. E., Zanella-Calzada, L. A., Celaya-Padilla, J. M., Galván-Tejada, J. I., Gamboa-Rosales, H., Luna-García, H., Magallanes-Quintanar, R., Guerrero Méndez, C. A., & Olvera-Olvera, C. A. (2020). Comparison of convolutional neural network architectures for classification of tomato plant diseases. Applied Sciences (Switzerland), 10(4). https://doi.org/10.3390/app10041245
Millar, S. B., & Cox-Singh, J. (2015). Human infections with Plasmodium knowlesi-zoonotic malaria. Clinical Microbiology and Infection, 21(7), 640–648. https://doi.org/10.1016/j.cmi.2015.03.017
Nurhikmat, T. (2018). Implementasi Deep Learning Untuk Image Classification Menggunakan Algoritma Convolutional Neural Network (CNN) Pada Citra Wayang Golek. In Mathematics Education Journal (Vol. 1, Issue 1). https://doi.org/10.29333/aje.2019.423a
Patterson, J., & Gibson, A. (2017). Deep learning A: PRACTITIONER’S APPROACH. In O’Reilly (Vol. 29, Issue 7553).
Perez, L., & Wang, J. (2017). The Effectiveness of Data Augmentation in Image Classification using Deep Learning. http://arxiv.org/abs/1712.04621
Permata, E., Purnama, I. K. E., & Purnomo, M. H. (2012). Klasifikasi Jenis Dan Fase Parasit Malaria Plasmodium Falciparum Dan Plasmodium Vivax Dalam Sel Darah Merah Menggunakan Support Vector Machine One Against One. Setrum, 1(2), 1–8.
79
UIN Syarif Hidayatullah Jakarta
and machine learning for detecting malaria. Translational Research, 194(2018), 36–55. https://doi.org/10.1016/j.trsl.2017.12.004
PUSDATINKemenkesRI. (2016). InfoDatin-Malaria-2016.pdf.
Putri, R. K. S. C. (2018). Implementasi Deep Learning Menggunakan Metode Convolutional Neural Network Untuk Klasifikasi Gambar. Mathematics Education Journal, 1(1), 75. https://doi.org/10.29333/aje.2019.423a
Rajaraman, S., Antani, S. K., Poostchi, M., Silamut, K., Hossain, M. A., Maude, R. J., Jaeger, S., & Thoma, G. R. (2018). Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ, 2018(4), 1–17. https://doi.org/10.7717/peerj.4568
Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: An astounding baseline for recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 512–519. https://doi.org/10.1109/CVPRW.2014.131
Ross, N. E., Pritchard, C. J., Rubin, D. M., & Dusé, A. G. (2006). Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Medical and Biological Engineering and Computing, 44(5), 427–436. https://doi.org/10.1007/s11517-006-0044-2
Sang, D. V., Van Dat, N., & Thuan, D. P. (2017). Facial expression recognition using deep convolutional neural networks. Proceedings - 2017 9th International Conference on Knowledge and Systems Engineering, KSE 2017, 2017-Janua(June), 130–135. https://doi.org/10.1109/KSE.2017.8119447
Schmidhuber, J. (2015). Deep Learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
(2017). Visualizing abnormalities in chest radiographs through salient network activations in Deep Learning. 2017 IEEE Life Sciences Conference, LSC 2017, 2018-Janua, 71–74. https://doi.org/10.1109/LSC.2017.8268146
Smith, L. N. (2017). Cyclical learning rates for training neural networks. Proceedings - 2017 IEEE Winter Conference on Applications of Computer Vision, WACV 2017, April, 464–472. https://doi.org/10.1109/WACV.2017.58
Srivasta, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple Way to Prevent Neural Networks from Overfitting. Physics Letters B, 299(3–4), 345–350. https://doi.org/10.1016/0370-2693(93)90272-J WHO. (2019). World malaria report 2019. In WHO Regional Office for Africa. World
Health Organization. https://www.who.int/news-room/fact-sheets/detail/malaria Zufar, M., & Setiyono, B. (2016). Convolutional Neural Networks Untuk Pengenalan
Wajah Secara Real-time. Jurnal Sains Dan Seni ITS, 5(2), 128862.
81