• Tidak ada hasil yang ditemukan

Saran Peneltian

Dalam dokumen SKRIPSI FISIKA (Halaman 48-67)

BAB V

KESIMPULAN DAN SARAN V.1 Kesimpulan Penelitian

Berdasarkan hasil penelitian ini dapat ditarik beberapa kesimpulan, yaitu:

1. Sintesis CDs dari sampah organik berupa daun mangga, daun glodokan tiang, dan daun palem dengan menggunakan metode radiasi microwave berhasil dilakukan. Hal ini ditunjukkan dari ukuran partikel terukur pada rentang 2 – 30 nm.

2. Sifat optik CDs dapat diketahui, berupa spektrum absorbansi rata-rata pada panjang gelombang 290 – 350 nm, dan emisi pada rentang 450 – 650 nm.

3. Berdasarkan perhitungan band gap, CDs dapat digolongkan sebagai material semikonduktor yang berpotensi digunakan sebagai katalisator dalam proses degradasi metilen biru. Dengan efektifitas degradasi hingga 57,85 % dengan penambahan CDs DMS dibawah radiasi ultraviolet sinar matahari langsung, selama 6 hari ( 4 jam/ hari).

DAFTAR PUSTAKA

[1] Z. Peng, dkk. “Carbon Dots: Biomacromolecule Interaction, Bioimaging and Nanomedicine”. Coordination Chemistry Reviews ELSEVIER, Vol. 343, : 256-277, 2017.

[2] P. Namdari, dkk. “Synthesis, Properties and Biomedical Applications of Carbon-Based Quantum Dots : An Update Review”. Biomedicine and Pharmacotherapy ELSEVIER, Vol. 87, : 209-222, 2017.

[3] M. Tuerhong, dkk. “Review on Carbon Dots and Their Applcations”.

Chinese Journal of Analytical Chemistry, Vol. 45, No.1 : 139-150, 2017.

[4] M. M. Fahad, dkk. “Bright Carbon Dots as Fluerescence Sensing Agents for Baceria and Curcumin”. Journal of Colloid and Interface Science ELSEVIER, Vol. 501, : 341-349, 2017.

[5] X. Huo, dkk. “Modified Facile Synthesis for quantitatively Fluorescent Carbon Dots”. Carbon ELSEVER, Vol. 122, : 389-394, 2017.

[6] X. Sun, dkk. “Fluorescent Carbon Dots and Their Sensing Applications”.

Trends in Analytical Chemistry ELSEVIER, Vol. 89, : 163-180, 2017.

[7] H. Yang, dkk. “A Portable Synthesis of Water-Soluble Carbon Dots for zhighly sensitive and Selective Detection of Chlorogenic Acid Based on Inner Filter Effect”. Specrokimia Aca Part A: Molekullar and Biomolecular Spectroscopy ELSEVIER, Vol. 189, : 139-146, 2017.

[8] J. Wang, dkk. “Synthesis, Characterization and Cells and Tissues Imaging of Carbon”. Optical Materials ELSEVIER, Vol. 72, No.: 15-19, 2017.

[9] Q. Zhang, dkk. “Degradasion of Indometacine by Simulated Sunlight Actived CDs-Loaded BiPO4 Photocatalyst: Roles of Oxidative Species”.

Applied Catalysis B: Environmental ELSEVIER, Vol. 221, : 129-139, 2017.

[10] A. R. C. Dewi, dkk. “Absorbance Spectrum Carbon Nanodots (C-Dots) Daun Tembakau”. Seminar Nasional Fisika SNF 2016, Jakarta, Oktober 2016.

[11] A. Kumari, dkk. “Synthesis of Green Fluorescent Carbon Quantum Dots Using Waste Polyolefins Residu for Cu2+ Ion Sensing and Live Cell

Imaging”. Sensor and Actuator B: Chemical ELSEVIER, Vol. 254, : 197-205.

[12] G. He, dkk. “Microwave Formation and Photoluminescence Mechanisms of Multi-State Nitrogen Doped Carbon Dots”. Applied Surface Science ELSEVIER, Vol. 422, : 257-265, 2017.

[13] Y. Choi, dkk. “Microwave-Assisted Synthesis of Lumnescent and Biocompatible Lysine-Based Carbon Quantum Dots”. Journal of Industrial and Engineering Cemistry ELSEVIER, : 1-7, 2016.

[14] J. Zhang, dkk. “The Sinthesis of Rhodium/ Carbon Dots Nanoarticles and Its Hydrogenation Application”. Applied Surface Science ELSEVIER, Vol.

396, : 1138-1145, 2016.

[15] I. A. G. Widihati, dkk. “Fotodegradasi Metilen Biru dengan Sinar UV dan Katalis ”. Jurusan Kimia FMPA Universitas Udayana, : 31-42, 2016.

[16] Y. D. Sintayehu, dkk. “Optical Photocatalytic Degradation of Methylene Blue Using Lignocellulose Modified ”. International Journal of Photohemistry and Photobiology, Vol. 2, No. 3 : 81-84, 2017

[17] D. I. Anwar, dkk. “Synthesis of Composite as a Photocatalyst for Degradation of Methylene Blue”. International Seminar on Chemistry 2014 ELSEVIER, No. 17 : 49-54, 2015.

[18] Y. Wang, dkk. “Carbon Quantum Dots: Synthesis, Properties, and Applications”. Journal of Materials Chemisstry C, Vol. 2, : 6921-6959, 2014.

[19] M. Gholinejad, dkk. “Green Synthesis of Carbon Quantum Dots from Vanillin for Modification of Magnetite Nanoparticles and Formation of Palladium Nanoparticles: Efficient Catalysts for Suzuki Reaction”.

Tetrahedron ELSEVIER, 2016.

[20] F. Duo, dkk. “Enchanced Visible Light Photocatalytic Activity and Stability of Composite: The Upconverson Effect of ”. Journalof Alloys and Compounds ELSSEVIER, Vol. 685, : 34-41, 2016.

[21] G. Chen, dkk. “A Novel Noble Metal-Free- Composite Photocatalyst for Evolution Under Visible Light Irradiation”. Catalysis Communications ELSEVIER, Vol. 45, : 51-54, 2013.

[22] Y. Gong, dkk. Band Gap Measurement. OpenStax-CNX Modules: m43554, http://creativveecommons.org/licenses/by/3.0/. 13 Desember 2017, 13:15:12 WIB.

[23] J. Dharma, dkk. Simple Method of Measuring The Band Gap Energy Value of in The Power Form Using a UV/Vis/NIR Spectrometer.

PerkinElmer. USA.

[24] Z. Khefacha, dkk. “The Band Gap Energy Calculated for Quantum Dots Grown by The Sol Gel Method”. International Journal of Applied Chemistry, Vol. 12, No. 4 : 573-579, 2016.

[25] N. Soltani, dkk. “Visible Light-Induced Degradation of Methylene Blue in The Presence of Photocatalytic ZnS and CDs Nanoparticles”. Int. J. Mol.

Sci, Vol. 13, :12242-12255, 2012.

[26] M. Petit, dkk. “An Introduction to Photocatalysis Through Mmethylene Blue Photodegradation”. HAL archives-ouvertes, 2016.

[27] J. Yao, dkk. “Decolorization of Methylene Blue with Sol Via UV Irradiation Photocatalytic Degradation”. Internatiioonal Journal of Photoenergy, 2010.

[28] H. A. Jassim, dkk. “Photo Catalytic Deegradation of Methylene Blue by Using CuO Nanoparticles”. International Journal o Computation and AppliedSsciences IJOCAAS, Vol. 1, No. 3 : 2399-4509.

[29] R. M. Mohamed, dkk. “Photocatalytic Degradation of Methylene Blue by Nanoparticles Under Visiblelight”. Journal of Nanotechnology, 2012.

[30] H. Hasssena. “Photocatalyti Degradation of Methylene Blue by Using Nano Composite Under Visible Light”. Modern Cheemistry

& Applicaions, Vol.4, No. 1 : 1-4, 2015.

[31] N. Attarchi, dkk. „‟Ag/ –CD Nano Composite: Preparation and Photo Catalytic Properties for Methylene Blue Degradation”. Applied Catalysis A: General ELSEVIER, Vol. 467, : 107-116.

[32] R. Ye, dkk. Photoluminescence Spectroscopy and Its Applications.

OpenStax-CNX Modules: m38357,

http://creativveecommons.org/licenses/by/3.0/. 13 Desember 2017, 14:26:27 WIB.

[33] J. E. Suseno, dkk. “Rancangan Bangun Spektroskopi FTIR (Forier Transorm Infrraared) untukk Penentuan Kualitas Susu Sapi”. Berkala Fisika, Vol. 11, No.1 : 23-28, 2008.

[34] M. Parven, dkk. “Synthesis of Fluoresencet Carbon Dots from The Leaves of Miletion Piannata for Detection of Allura Red in Food Samples”.

International Journal of Research in Pharmacology and Pharmacotherapeutics, : 90-93, 2016.

[35] S. S. Al-Shamali. “Photocatalytic Degradation of Methylene Blue in The Presence of Catalyst Assisted Solar Radiation”. Australian Journal of Basic and Applied Sciences, Vol. 7, No.4 : 172-176, 2013.

LAMPIRAN Lampiran A

Alat dan Bahan 1. Alat

Gambar 1. Seperangkat gelas beaker

Gambar 2. Neraca analitik

Gambar 3. Botol reagen

Gambar 4. Kertas saring

Gambar 5. Pipet volum

Gambar 6. Spatula

Gambar 7. Microwave (LG MS2042D; 700 Watt)

Gambar 10. Sentrifuge Gambar 9. Alumuniufoil

Gambar 8. Kuvet

Gambar 11.

Blender

Gambar 12. Spektrometer UV-Vis (Ocean Optic MAYA Pro 2000)

Gambar 13. Personal Computer (PC)

2000)

Gambar 14. Laser Ultraviolet (UV)

2. Bahan

Gambar 15. Aquades Gambar 16. Metilen biru ( )

Gambar 17. Daun glodokan tiang (Polyalthia longifolia)

Gambar 18. Daun manga (Mangifera indica)

Gambar 19. Daun palem (Roystone regia)

Lampiran B

CDs Sebagai Katalisator

1. Metilen Biru Sebelum Penyinaran

Gambar 20. Larutan sebelum penyinaran (a) MB murni (b) MB + CDs DPS (c) MB + CDs DPK (d) MB + CDs DMS (e) MB + CDs DMK (f) MB + CDs DGS

(g) MB + CDs DGK 2. Metilen Biru Setelah Penyinaran

Gambar 21. Larutan setelah penyinaran (a) MB murni (b) MB + CDs DPS (c) MB + CDs DPK (d) MB + CDs DMS (e) MB + CDs DMK (f) MB + CDs DGS

(g) MB + CDs DGK

Lampiran C Analisis Data

5. Karakteristik Optik CDs

Tabel 1. Spektrum absorbansi CDs

No Jenis CDs

Panjang Gelombang Absorbansi

(au)

1 CDs DPS 298,08 – 347,61 323,93 2,240

2 CDs DPK 297,17 – 362,20 330,49 2,642

3 CDs DMS 298,69 – 368,88 348,82 2,418

4 CDs DMK 298,69 – 398,05 382,30 2,601

5 CDs DGS 297,06 – 321,67 307,65 1,863

6 CDs DGK 298,08 – 339,41 318,40 2,427

Keterangan :

= Panjang gelombang absorbansi maksimum

= Intensitas absorbansi maksimum

Tabel 2. Spektrum emisi CDs Jenis CDs

(nm)

(nm) CDs DPS

450-650

524,82

650-700 675,63 719-738 728,41 CDs DPK

CDs DMS 538,00

CDs DMK

524,82 CDs DGS

CDs DGK Keterangan :

= Rentang panjang gelombang emisi

= Panjang gelombang emisi maksimum

= Rentang panjang gelombang klorofil 1

= Panjang gelombang klorofil1 maksimum

= Rentang panjang gelombang klorofil 2

= Panjang gelombang klorofil2 maksimum 6. Band Gap

Tabel 3. Perhitugan band gap

Keterangan :

jenis CDs Energi Gap

( J)

Panjang Gelombang

( nm)

Kostanta Plank

(J.s)

Kecepatan Cahaya (

Eg (eV)

CDs DPS

4,85 4,10

3,03

CDs DPK 4,64 4,29 2,90

CDs DMS 4,78 4,17 2,98

CDs DMK 4,41 4,51 2,75

CDs DGS 5,08 3,91 3,18

CDs DGK 4,83 4,12 3,02

7. Perhitungan Diameter CDs dari data TEM

Gambar 22. Data TEM (a) CDs DMK (b) CDs DMS (c) CDs DGK (d) CDs DGS

CDs DMK

CDs DGS CDs DGK

CDs DMS

Tabel 4. Perhitugan diameter CDs DGK

frekuensi

Diameter Terukur

Panjang Terukur

Panjang Sebenarnya

Diameter Sebenarnya

(m) (m) (nm) (nm)

1 0,006

0,153 100

3,921569

2 0,007 4,575163

1 0,012 7,843137

2 0,017 11,111111

1 0,019 12,418300

1 0,023 15,032680

Diameter Rata-Rata (nm) 9,150327

Tabel 5. Perhitugan diameter CDs DGS

frekuensi

Diameter Terukur

Panjang Terukur

Panjang Sebenarnya

Diameter Sebenarnya

(m) (m) (nm) (nm)

1 0,005

0,163 200

6,134969

1 0,006 7,361963

1 0,007 8,588957

3 0,009 11,042940

1 0,010 12,269940

1 0,012 14,723930

1 0,014 17,177910

Diameter Rata-Rata (nm) 11,042940

Tabel 6. Perhitugan diameter CDs DMS

frekuensi

Diameter Terukur

Panjang Terukur

Panjang Sebenarnya

Diameter Sebenarnya

(m) (m) (nm) (nm)

1 0,005

0,152 500

16,447370

1 0,010 32,894740

1 0,011 36,184210

1 0,012 39,473680

Diameter Rata-Rata (nm) 31,250000

Tabel 7. Perhitugan diameter CDs DMK

frekuensi

Diameter Terukur

Panjang Terukur

Panjang Sebenarnya

Diameter Sebenarnya

(m) (m) (nm) (nm)

1 0,010

0,146 20

1,369863

2 0,012 1,643836

1 0,016 2,191781

1 0,023 3,150685

1 0,026 3,561644

Diameter Rata-Rata (nm) 2,383562

8. Degradasi

Tabel 8. Persentase degradasi

Waktu (4 Jam/ Hari)

Persentase Degradasi % ( )

MB

MB CDs DPS

MB CDs DPK

MB CDs DMS

MB CDs DMK

MB CDs DGS

MB CDs DGK 0 0,00 33,50 24,35 20,25 37,95 35,80 17,15 1 5,40 32,20 22,35 27,70 39,70 42,70 18,00 2 7,70 35,75 30,30 36,40 43,75 42,70 25,85 3 7,85 41,85 30,20 48,85 44,70 45,50 27,55 4 7,80 42,35 29,45 53,20 43,25 46,30 31,00 5 4,15 43,20 29,55 57,55 44,55 44,85 29,55 6 6,15 46,00 34,15 57,85 42,60 45,50 29,00 7 5,15 49,95 41,70 57,80 45,30 44,75 28,80 8 1,30 51,90 42,60 55,30 42,55 45,60 29,35 9 3,40 52,15 45,80 48,30 38,15 44,45 41,10 10 6,55 52,10 47,40 46,90 39,80 44,05 48,40

Tabel 9. Persentase degradasi optimum

No Jenis Larutan Hari Ke-n Persentase Degradasi Optimum (%)

1 MB 3 7,85

2 MB + CDs DPS 9 52,15

3 MB + CDs DPK 10 47,40

4 MB + CDs DMS 6 57,85

5 MB + CDs DMK 7 45,30

6 MB + CDs DGS 4 46,30

7 MB + CDs DGK 10 48,40

LAMPIRAN D Kelengkapan Berkas

Dalam dokumen SKRIPSI FISIKA (Halaman 48-67)

Dokumen terkait