F.2 31 March 2005 Observations
F.2.1 Sunset Period - 14.591 MHz
F.2 31 March 2005 Observations
0 50 100 150 200 250 300 350 400
−130
−120
−110
−100
−90
−80
−70
Time fading at 14.9506 MHz 31−Mar−2005 18:18:06
Time (s)
Signal Power (dB)
vertical horizontal
(a) First mode
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−130
−120
−110
−100
−90
−80
−70
Freq fading at 99.9975 s 31−Mar−2005 18:18:06
Frequency (MHz)
Signal Power (dB)
vertical horizontal
(b) First mode
0 50 100 150 200 250 300 350 400
−130
−120
−110
−100
−90
−80
−70
Time fading at 14.9506 MHz 31−Mar−2005 18:18:06
Time (s)
Signal Power (dB)
vertical horizontal
(c) Second mode
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−130
−120
−110
−100
−90
−80
−70
Freq fading at 99.9975 s 31−Mar−2005 18:18:06
Frequency (MHz)
Signal Power (dB)
vertical horizontal
(d) Second mode
0 50 100 150 200 250 300 350 400
−130
−120
−110
−100
−90
−80
−70
Time fading at 14.9506 MHz 31−Mar−2005 18:18:06
Time (s)
Signal Power (dB)
vertical horizontal
(e) Third mode
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−130
−120
−110
−100
−90
−80
−70
Freq fading at 99.9975 s 31−Mar−2005 18:18:06
Frequency (MHz)
Signal Power (dB)
vertical horizontal
(f) Third mode
0 50 100 150 200 250 300 350 400
−130
−120
−110
−100
−90
−80
−70
Time fading at 14.9506 MHz 31−Mar−2005 18:18:06
Time (s)
Signal Power (dB)
vertical horizontal
(g) Fourth mode
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−130
−120
−110
−100
−90
−80
−70
Freq fading at 99.9975 s 31−Mar−2005 18:18:06
Frequency (MHz)
Signal Power (dB)
vertical horizontal
(h) Fourth mode
Figure F.12. Signal fading behaviour of the separate propagation modes for the 90 kHz band at 13.125 MHz at 18:18 local time on 31st March 2005. Temporal fading behaviour over 400 seconds is shown in (a), (c), (e) and (g). Spectral fading behaviour is shown in
Time (s)
Frequency (MHz)
Spectrogram for vertical polarisation 31−Mar−2005 18:18:06
0 50 100 150 200 250 300 350 400
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−130
−120
−110
−100
−90
−80
−70
(a) First mode - Vertical
Time (s)
Frequency (MHz)
Spectrogram for horizontal polarisation 31−Mar−2005 18:18:06
0 50 100 150 200 250 300 350 400
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−130
−120
−110
−100
−90
−80
−70
(b) First mode - Horizontal
Time (s)
Frequency (MHz)
Spectrogram for vertical polarisation 31−Mar−2005 18:18:06
0 50 100 150 200 250 300 350 400
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−130
−120
−110
−100
−90
−80
−70
(c) Second mode - Vertical
Time (s)
Frequency (MHz)
Spectrogram for horizontal polarisation 31−Mar−2005 18:18:06
0 50 100 150 200 250 300 350 400
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−130
−120
−110
−100
−90
−80
−70
(d) Second mode - Horizontal
Time (s)
Frequency (MHz)
Spectrogram for vertical polarisation 31−Mar−2005 18:18:06
0 50 100 150 200 250 300 350 400
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−130
−120
−110
−100
−90
−80
−70
(e) Third mode - Vertical
Time (s)
Frequency (MHz)
Spectrogram for horizontal polarisation 31−Mar−2005 18:18:06
0 50 100 150 200 250 300 350 400
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−130
−120
−110
−100
−90
−80
−70
(f) Third mode - Horizontal
Time (s)
Frequency (MHz)
Spectrogram for vertical polarisation 31−Mar−2005 18:18:06
0 50 100 150 200 250 300 350 400
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−130
−120
−110
−100
−90
−80
−70
(g) Fourth mode - Vertical
Time (s)
Frequency (MHz)
Spectrogram for horizontal polarisation 31−Mar−2005 18:18:06
0 50 100 150 200 250 300 350 400
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−130
−120
−110
−100
−90
−80
−70
(h) Fourth mode - Horizontal
Figure F.13. Spectrograms showing temporal-spectral fading behaviour of the separate propagation modes for the 90 kHz band at 13.125 MHz at 18:18 local time on 31st March 2005.
Vertical polarisation is shown in (a), (c), (e) and (g). Horizontal polarisation is shown in (b), (d), (f) and (h). The final mode was significantly weaker in signal strength
F.2 31 March 2005 Observations
0 50 100 150 200 250 300 350 400
−120
−110
−100
−90
−80
−70
−60
Time fading at 14.951 MHz 31−Mar−2005 18:18:06
Time (s)
Signal Power (dB)
vertical horizontal
(a)
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−120
−110
−100
−90
−80
−70
−60
Freq fading at 0 s 31−Mar−2005 18:18:06
Frequency (MHz)
Signal Power (dB)
vertical horizontal
(b)
Figure F.14. Signal multipath fading behaviour for the 90 kHz band at 13.125 MHz at 18:18 local time on 31st March 2005, in both vertical and horizontal polarisations. Temporal multipath fading behaviour is shown in (a) and spectral multipath fading behaviour is in (b).
Time (s)
Frequency (MHz)
Spectrogram for vertical polarisation 31−Mar−2005 18:18:06 multipath
0 50 100 150 200 250 300 350 400
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−120
−110
−100
−90
−80
−70
−60
(a) Multipath - Vertical
Time (s)
Frequency (MHz)
Spectrogram for horizontal polarisation 31−Mar−2005 18:18:06 multipath
0 50 100 150 200 250 300 350 400
14.93 14.935 14.94 14.945 14.95 14.955 14.96 14.965 14.97
−120
−110
−100
−90
−80
−70
−60
(b) Multipath - Horizontal
Figure F.15. Spectrograms showing temporal-spectral multipath fading behaviour for the 90 kHz band at 13.125 MHz at 18:18 local time on 31st March 2005. Vertical polarisation is shown in (a) and horizontal polarisation is shown in (b).
[1] K. G. Budden. The propagation of radio waves - The theory of radio waves of low power in the ionosphere and magnetosphere. Cambridge University Press, 1985.
[2] Kenneth Davies. Ionospheric Radio. Institution of Engineering and Technology, 1990.
[3] K. C. Yeh and C. H. Liu. Theory of ionospheric waves. Academic Press, 1972.
[4] J. Haselgrove. Ray theory and a new method for ray tracing. In Conference on the Physics of the Ionosphere, pages 355–364. Physical Society, London, 1954.
[5] J. Haselgrove. Oblique ray paths in the ionosphere. Proceedings of Physical Society.
Section B, 70:653–662, 1957.
[6] R. M. Jones and J. J. Stephenson. A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere. OT Report 75-76, Office of Telecommu- nications, U.S. Department of Commerce, 1975.
[7] C. J. Coleman. A ray tracing formulation and its application to some problems in over-the-horizon radar. Radio Science, 33(4):1187–1197, July–August 1998.
[8] T. A. Croft and H. Hoogasian. Exact ray calculations in a quasi-parabolic ionosphere with no magnetic-field. Radio Science, 3(1):69–74, January 1968.
[9] J. Chen. Rapid calculation of oblique ionospheric radio porpagation from vertical measurements. Master’s thesis, Monash University, Clayton, Victoria, 1989.
[10] J. A. Bennett, J. Chen, and P. L. Dyson. Analytic ray tracing for the study of HF magnetoionic radio propagation in the ionosphere. Journal of Applied Computational Electromagnetic Society, 56:192–210, 1991.
Bibliography
[11] J. A. Bennett, J. Chen, and P. L. Dyson. Analytic calculation of the ordinary (O) and extraordinary (X) mode nose frequencies on oblique ionograms. Journal of Atmospheric and Terrestrial Physics, 56(5):631–636, 1994.
[12] M. Faraday. On the magnetization of light and the illumination of magnetic lines of force. Philosophical Transactions of the Royal Society of London, 136:1–20, 1846.
[13] P. O. Pedersen. The propagation of radio waves along the surface of the earth and in the atmosphere. Danmarks Naturvidenskabelige Samfund, 1927.
[14] K. C. Yeh, H. Y. Chao, and K. H. Lin. A study of the generalized Faraday effect in several media. Radio Science, 34(1):139–153, January–February 1999.
[15] K. C. Yeh, H. Y. Chao, and K. H. Lin. Polarization transformation of a wave field propagating in an anisotropic medium. IEEE Antennas and Propagation Magazine, 41(5):19–33, October 1999.
[16] G. L. Grisdale, J. G. Morris, and D. S. Palmer. Fading of long-distance radio signals and a comparison of space- and polarization-diversity reception in the 6–18 mc/s range. Proceedings of IEE, pages 39–51, January 1957.
[17] D. A. Hedlund and L. C. Edwards. Polarization fading over an oblique incidence path. IRE Transaction on Antennas and Propagation, 6(1):21–25, January 1958.
[18] J. M. Kelso. Doppler shifts and faraday rotation of radio signals in a time-varying, in- homogeneous ionosphere - part i. single signal case. Journal of Geophysical Research, 65(12):3909–3914, December 1960.
[19] J. M. Kelso. Doppler shifts and faraday rotation of radio signals in a time-varying, inhomogeneous ionosphere - part ii. two-signal case. Journal of Geophysical Research, 66(4):1107–1115, April 1961.
[20] Mark R. Epstein. The effects of polarization rotation and phase delay with fre- quency on ionospherically propagated signals. IEEE Transaction on Antennas and Propagation, AP-16(5):548–553, September 1968.
[21] S. J. Anderson. Ionospheric Faraday rotation signatures in space-time-frequency do- main. In HF Radio Systems and Techniques, number 339 in Conference Publication, pages 167–172, 1991.
[22] R. I. Barnes. Faraday rotation in a cold, inhomogeneous magnetoplasma: A numerical comparison of ray and full wave analyses. Radio Science, 32(4):1523–1532, July–
August 1997.
[23] Y. W. Kiang and C. H. Liu. Multiple phase-screen simulation of hf wave propagation in the turbulent stratified ionosphere. Radio Science, 20(3):652–668, May–June 1985.
[24] D. L. Knepp. Multiple phase-screen calculation of the temporal behavior of stochastic waves. Proceedings of the IEEE, 71(6):722–737, June 1983.
[25] J. F. Wagen and K. C. Yeh. A numerical study of waves reflected from a turbulent ionosphere. Radio Science, 21(4):583–604, July–August 1986.
[26] A. V¨astberg and B. Lundborg. Signal intensity in the geometrical optics approxi- mation for the magnetized ionosphere. Radio Science, 31(6):1579–1588, November- December 1996.
[27] L. J. Nickisch. Focusing in the stationary phase approximation. Radio Science, 23(2):171–182, March–April 1988.
[28] K. C. Yeh and C.-H. Liu. Radio Wave Scintillation in the Ionosphere. Proceedings of the IEEE, 70(4):324–360, April 1982.
[29] H. G. Booker and J.-W. Tao. A scintillation theory of the fading of HF waves returned from thef-region: receiver near transmitter. Journal of Atmospheric and Terrestrial Physics, 49(9):915–938, 1987.
[30] H. G. Booker, J.-W. Tao, and A. B. Behroozi-Toosi. A scintillation theory of the fading in long distance HF ionospheric communications. Journal of Atmospheric and Terrestrial Physics, 49(9):939–958, 1987.
[31] A. Duel-Hallen, S. Hu, and H. Hallen. Long-range prediction of fading signals. IEEE Signal Processing Magazine, pages 62–74, May 2000.
[32] S. V. Fridman, K. C. Yeh, O. V. Fridman, and S. J. Franke. Linear and nonlinear prediction techniques for short-term forecasting of HF fading signals. Radio Science, 32(3):989–998, 1997.
Bibliography
[33] C. C. Watterson, J. R. Juroshek, and W. D. Bensema. Experimental confirmation of an hf channel model. IEEE Transactions on Communication Technology, COM- 18(6):792–803, December 1970.
[34] J. F. Mastrangelo, J. J. Lemmon, L. E. Vogler, J. A. Hoffmeyer, L. E. Pratt, and C. J.
Behm. New wideband high frequency channel simulation system. IEEE Transactions on Communications, 45(1):26–34, January 1997.
[35] R. Lindstr¨om and B. Johansson. Measurement of, and propagation models for the wide-band hf channel. In HF Radio Systems and Techniques, number 392 in Confer- ence Publication, pages 109–113. IEE, 1994.
[36] A. V¨astberg and B. Lundborg. Ray tracing studies of multipath fading in the iono- spheric HF channel. InHF Radio Systems and Techniques, number 411 in Conference Publication, pages 30–34, 1997.
[37] V. E. Gherm and N. N. Zernov. Scattering function of the fluctuating ionosphere in the HF band. Radio Science, 33(4):1019–1033, July–August 1998.
[38] V. E. Gherm, N. N. Zernov, and H. J. Strangeways. Hf propagation in a wideband ionospheric fluctuating reflection channel: Physically based software simulator of the channel. Radio Science, 40(1):RS1001, January 2005.
[39] M. J. Angling, P. S. Cannon, N. C. Davies, T. J. Willink, V. Jodalen, and B. Lund- borg. Measurements of Doppler and multipath spread on oblique high-latitude HF paths and their use in characterizing data modem performance. Radio Science, 33(1):97–107, January–February 1998.
[40] N. C. Davies. A high performance HF software radio. InEighth International confer- ence on HF Radio Systems and Techniques, number 474 in Conference publication, pages 249–256. IEE, 2000.
[41] M. J. Salvati. A miniature broadband antenna. Electronic Design, February 1995.
[42] D. E. Barrick. FM/CW radar signals and digital processing. Technical Report ERF 283-WPL 26, NOAA, July 1973.
[43] S. Salous. FMCW channel sounder with digital processing for measuring the coher- ence of wideband HF radio links. IEE Proceedings, 133(Pt. F, 5):456–462, August 1986.
[44] S. C. Cook. HF communication in the information age. InSeventh International con- ference on HF Radio Systems and Techniques, number 441 in Conference publication, pages 1–5. IEE, 1997.
[45] Kenneth Davies. Ionospheric Radio Propagation, chapter 2, pages 63–71. Dover Publications, Inc., 1966.
[46] Kenneth Davies. Ionospheric Radio Propagation, chapter 4, page 161. Dover Publi- cations, Inc., 1966.
[47] Christopher Coleman. An Introduction to Radio Frequency Engineering, chapter 11, pages 274–285. Cambridge University Press, 2004.
[48] J. A. Bennett, P. L. Dyson, and R. J. Norman. Progress in radio ray tracing in the ionosphere. Radio Science Bullentin, (310):81–91, September 2004.
[49] J. R. Barnum. Skywave polarization rotation in swept EM dash frequency sea backscatter. Radio Science, (5):411–423, May 1973.
[50] John M. Kelso. Radio ray propagation in the ionosphere, chapter 5. McGraw-Hill, Inc., 1964.
[51] J. Chen, J. A. Bennett, and P. L. Dyson. Automatic fitting of quasi-parabolic seg- ments to ionospheric profiles with application to ground range estimation for single- station location. Journal of Atmospheric and Terrestrial Physics, 52(4):277–288, 1990.
[52] J. Chen, J. A. Bennett, and P. L. Dyson. Synthesis of oblique ionograms from vertical ionograms using quasi-parabolic segment models of the ionosphere. Journal of Atmospheric and Terrestrial Physics, 54(3/4):323–331, 1992.
[53] J. V. Beck, K. D. Cole, A. Haji-Sheikh, and B. Litkouhi. Heat conduction using Green’s functions. Hemisphere Publishing Corporation, 1992.
Bibliography
[54] P. S. Cannon, M. J. Angling, and B. Lundborg. Characterization and modeling of the HF communications channel. In W. R. Stone, editor, Review of Radio Science:
1999–2002, pages 597–622. Wiley-IEEE Press, 2002.
[55] Dieter Bilitza. International Reference Ionosphere 2000. Radio Science, 36(2):261–
275, March/April 2001.
[56] Susan McLean, Susan Macmillan, Vincent Lesur, Alan Thomson, Stefan Maus, and David Dater. The US/UK World Magnetic Model for 2005 - 2010. Technical report, NOAA NESDIS/NGDC-1, December 2004.
[57] C. J. Coleman. On the simulation of backscatter ionograms. Journal of Atmospheric and Solar-Terrestrial Physics, 59(16):2089–2099, 1997.
[58] Michael H. Reilly. Upgrades for efficient three-dimensional ionospheric ray tracing:
Investigation of HF near vertical incidence sky wave effects. Radio Science, 26(4):971–
980, July–August 1991.
[59] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in FORTRAN: The Art of Scientific Computing. Cambridge Uni- versity Press, 2 edition, 1992.
[60] Anders V¨astberg. Investigations of the Ionospheric HF Channel by Ray Tracing, IRF Scientific Report 241. Technical report, Swedish Institute of Space Physics,Uppsala Division, April 1997.
[61] Hal J. Strangeways. Effects of horizontal gradients on ionospherically reflected or transionospheric paths using a precise homing-in method. Journal of Atmospheric and Solar-Terrestrial Physics, 62(15):1361–1376, October 2000.
[62] Sawako Maeda and Shun Handa. Transmissions of large-scale TIDs in the ionospheric F2-region. Journal of Atmospheric and Terrestrial Physics, 42(9–10):853–859, 1980.
[63] E. L. Afraimovich, E. A. Kosogorov, O. S. Lesyuta, I. I. Ushakov, and A. F. Yakovets.
Geomagnetic control of the spectrum of traveling ionospheric disturbances based on data froma global GPS network. Annales Geophysicae, 19(7):723–731, 2001.
[64] Z. S. Sharadze, G. A. Dzhaparidze, Z. L. Liadze, N. V. Mosashvili, and O. P. Chokheli.
Traveling Ionospheric Disturbances and Sporadic F2 Layer in the Mid-Latitude Iono- sphere. Geomagnetism and Aeronomy, 26(3):327–330, 1986.
[65] K. Hocke, K. Schlegel, and G. Kirchengast. Phases and amplitudes of TIDs in the high latitude F-region observed by EISCAT. Journal of Atmospheric and Terrestrial Physics, 58(1–4):245–255, 1996.
[66] P. S. Cannon, M. J. Angling, N. C. Davies, T. Wilink, V. Jodalen, B. Jacobson, B. Lundborg, and M. Broms. Damson HF channel characterisation - a review. In Proceedings of IEEE Military Communications Conference, volume 1, pages 22–25.
IEEE, October 2000.
[67] Christopher Coleman. An Introduction to Radio Frequency Engineering. Cambridge University Press, 2004.
[68] Warren L. Stutzman. Polarization in Electromagnetic Systems, chapter 7, page 151.
Artech House, Inc., 1993.
[69] Adel S. Sedra and Kenneth C. Smith. Microelectronic Circuits, chapter 5, pages 416–419. Oxford University Press, fourth edition, 1998.
[70] Chris Bowick. RF Circuit Design, chapter 3. SAMS, 1982.
[71] NEC Corporation. Bipolar Analog Integrated Circuit μPC1688G, 1996.
[72] Arthur B. Williams and Fred J. Taylor.Electronic Filter Design Handbook, chapter 2, pages 2.71–2.81. McGraw-Hill, Inc., 1995.
[73] Maxim Integrated Products. Defining and Testing Dynamic Parameters in High- Speed ADCs, Part 1, 2001.
[74] Mini-Circuits. Measuring the electrical performance characteristics of RF/IF and microwave signal processing components, 1999.
[75] Maxim Integrated Products. Dynamic Testing of High-Speed ADCs, Part 2, 2001.
[76] Mathworks. Creating C Language MEX-Files, 2005.
Bibliography
[77] J. B. Sykes and J. H. Stott. Launch of international radio services using digital radio mondiale (DRM). In The 10th IET conference on Ionospheric Radio Systems and Techniques, pages 291–295, 2006.
[78] T. A. Sykes and R. K. Jarrott. Architecture of an HF skywave radar network. In HF Radio Systems and Techniques, number 392 in Conference Publication, pages 291–295, 1994.
[79] Don H. Sinnott. The Development of Over-the-Horizon Radar in Australia. Defence Science and Technology Organisation, 1988.
[80] M. Sinclair-Jones. JORN assures early warning for Australia. Defence Systems Daily, February 2000.
[81] G. F. Earl and B. D. Ward. The frequency management system of the Jindalee over-the-horizon backscatter HF radar. Radio Science, 22(2):275–291, March–April 1987.
[82] R. S. Gardiner-Garden. Ionospheric variability in sounding data from JORN. In Proceedings of the WARS2006 Conference, 2006.
[83] Kenneth Davies. Ionospheric Radio Propagation, chapter 5, pages 237–241. Dover Publications, Inc., 1966.
[84] Nicholas Maslin. HF Communications - A Systems Approach, chapter 4, pages 67–69.
Plenum Press, 1987.
[85] A. E. Carr, L. G. Cuthbert, and A. D. Olver. Digital signal processing for target detection in FMCW radar. IEE Proceedings, 128 Pt. F(5):331–336, October 1981.
[86] E. M. Warrington. On the processing of FMCW signals for ionospheric sounding applications. In HF Radio Systems and Techniques, number 392 in Conference pub- lication, pages 379–382. IEE, July 1994.
[87] R. Shepherd and J. Lomax. Frequency Spread in Ionospheric Radio Propagation.
IEEE Transactions on Communications, 15(2):268–275, April 1967.
[88] P. A. Bello. Characterization of randaomly time-variant linear channels.IEEE Trans- actions on Communications Systems, CS-11(4):360–393, December 1963.