A new integral version of generalized Ostrowski- Grüss type inequality with applications
This is the Published version of the following publication
Dragomir, Sever S, Khan, Asif R, Khan, Maria, Mehmood, Faraz and Shaikh, Muhammad Awais (2022) A new integral version of generalized Ostrowski- Grüss type inequality with applications. Journal of King Saud University - Science, 34 (5). ISSN 1018-3647
The publisher’s official version can be found at
https://www.sciencedirect.com/science/article/pii/S1018364722002385
Note that access to this version may require subscription.
Downloaded from VU Research Repository https://vuir.vu.edu.au/45660/
Original article
A new integral version of generalized Ostrowski-Grüss type inequality with applications
Sever S. Dragomir
a, Asif R. Khan
b, Maria Khan
b,c, Faraz Mehmood
c,⇑, Muhammad Awais Shaikh
daDepartment of Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
bDepartment of Mathematics, University of Karachi, University Road, Karachi 75270, Pakistan
cDepartment of Mathematics, Dawood University of Engineering and Technology, New M. A Jinnah Road, Karachi 74800, Pakistan
dDepartment of Mathematics, Nabi Bagh Z. M. Govt. Science College, Saddar, Karachi 74400, Pakistan
a r t i c l e i n f o
Article history:
Received 25 July 2021 Revised 10 April 2022 Accepted 22 April 2022 Available online 28 April 2022
2010 Mathematics Subject Classifications:
26D15 26D20 26D99
Keywords:
Ostrowski-Grüss inequality Cˇ ebyšev functional Korkine’s identity Cauchy-Schwartz inequality numerical integration Special means
a b s t r a c t
Our aim is to improve and further generalize the result of integral Ostrowski-Grüss type inequalities involving differentiable functions and then apply these obtained inequalities to probability theory, spe- cial means and numerical integration.
Ó2022 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction
InOstrowski (1938), Ostrowski presented an inequality which is now known as ‘‘Ostrowski’s inequality” stated below:
fðzÞ 1 nm
Z n m
fð
s
Þds
6 1
4þðzmþn2 Þ2 ðnmÞ2
" #
ðnmÞM; z2 ½m;n ð1:1Þ
wheref:½m;n !Ris a differentiable function such thatjf0ðzÞj6M, for everyz2 ½m;n.
In present era, a large number of papers has been written about generalizations of Ostrowski’s inequality see for example (Anastassiou, 1997; Cheng, 2001; Dragomir and Wang, 1997;
Irshad and Khan, 2017; Liu, 2008; Matic´ et al., 2000; Milovanovic and Pecaric, 1976; Shaikh et al., 2021; Zafar and Mir, 2010).
Ostrowski’s inequality has proven to be an important tool for improvement of various branches of mathematical sciences. Very well said (Zafar, 2010) ‘‘Inequalities involving integrals that create bounds in the physical quantities are of great significance in the sense that these kinds of inequalities are not only used in approx- imation theory, operator theory, nonlinear analysis, numerical integration, stochastic analysis, information theory, statistics and probability theory but we may also see their uses in the various fields of biological sciences, engineering and physics”.
In the history, an important inequality that ‘‘estimate for the difference between the product of the integral of two functionals and the integral of their product” is known as ‘‘Grüss inequality”.
https://doi.org/10.1016/j.jksus.2022.102057
1018-3647/Ó2022 Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
⇑Corresponding author.
E-mail addresses:[email protected](S.S. Dragomir),[email protected] (A.R. Khan),[email protected](M. Khan),[email protected](F.
Mehmood).
Peer review under responsibility of King Saud University.
Production and hosting by Elsevier
Contents lists available atScienceDirect
Journal of King Saud University – Science
j o u r n a l h o m e p a g e : w w w . s c i e n c e d i r e c t . c o m
This celebrated integral inequality was proved byGrüss (1935)in 1935, is stated below (see alsoMitrinovic´ et al. (1994)[p. 296]),
nm1
Rn
mfðzÞ
g
ðzÞdz nm1 Rn mfðzÞdz1
nm
Rn m
g
ðzÞdz
614ðM1m1ÞðN1n1Þ ð1:2Þ
provided thatfand
g
are integrable functions on½m;nsuch that m16fðzÞ6M1; n16g
ðzÞ6N1;8z2 ½m;n, wherem1;M1;n1;N1are real constants.
By using Grüss inequality, Dragomir and Wang proved an inequality, in the year 1997, which we would refer as
‘‘Ostrowski-Grüss inequality” (Dragomir and Wang, 1997) which is stated as follows:
Proposition 1.1. Supposef:I!Rbe a function differentiable in the interior Io of I, where I #R, and let m;n2Io and n>m. If
c
6f0ðzÞ6C;z2 ½m;nfor real constantsc
;C, thenfðzÞ 1 nm
Z n m
fð
s
Þds
fðnÞ fðmÞnm zmþn 2
61
4ðnmÞðC
c
Þ ð1:3Þholds,8z2 ½m;n.
Above inequality gives a relationship between Ostrowski inequality(1.1)and Grüss inequality(1.2).
Iffandgbelong toL2½m;n, then the Cˇ ebyšev functionalTðf;
g
Þis defined asTðf;
g
Þ ¼ 1 nmZ n m
fðzÞ
g
ðzÞdz1
nm Z n
m
fðzÞdz
1 nm
Z n m
g
ðzÞdz
:
FromMatic´ et al. (2000)pre-Grüss inequality is given below.
Proposition 1.2. Let f;
g
:½m;n !R be integrable such that fg
2Lðm;nÞ. Ifc
6g
ðzÞ6C for z2 ½m;n;then jTðf;
g
Þj612ðC
c
Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi Tðf;fÞp :
In the article (Matic´ et al., 2000) of year 2000, Matic´, Pecaric´ and Ujevic´ improved inequality (1.1), by using pre-Grüss inequality, which is as follows:
Proposition 1.3. Supposef:I!Rbe a function differentiable in the interior Io of I, where I#R, and let m:n2Io and n>m. If
c
6f0ðzÞ6C;z2 ½m;nfor real constantsc
;C, thenfðzÞ 1 nm
Z n m
fð
s
Þds
fðnÞ fðmÞnm zmþn 2
6 1
4 ffiffiffi
p ðn3 mÞðC
c
Þ holds,8z2 ½m;n.In the article (Barnett et al., 2000), by using Cˇ ebyšev functional, improved the Matic´-Pecˇaric´-Ujevic´ result(1.3)in terms of ‘‘Eucli- dean norm” as under:
Proposition 1.4. Let functionf:½m;n !Rbe an absolutely contin- uous and derivativef02L2½m;n. If
c
6f0ðs
Þ6Calmost everywhere fors
2 ½m;n, then8z2 ½m;nfðzÞ nm1 Rn
mfð
s
Þds
fðnÞfðmÞnm zmþn2
6nm2pffiffi3nm1 kf0k22fðnÞfðmÞnm 21
2
641ffiffi
p3ðnmÞðC
c
Þð1:4Þ
holds.
This article is divided into six sections: the 1st section totally based on introduction and preliminaries. In the 2nd section, we would give our main result about generalization of integral Ostrowski-Grüss type inequalities and would discuss its different special cases. In the 3rd, 4th and 5th sections, using the obtained result we would give some applications to probability theory, spe- cial means and numerical integration respectively and the 6th con- cludes the article.
2. New generalization of integral Ostrowski-Grüss type inequality
Our main theorem of this section is given in the following:
Theorem 2.1. Letf:½m;n !Rbe a differentiable function whose 1st derivative belongs to L2ðm;nÞ. If
c
6f0ðs
Þ6Calmost everywhere fors
2 ½m;n, then8z2 ½mþknm2 ;mþn2 andk2 ½0;1ð1kÞfðzÞþfðmþnzÞ
2 þkfðmÞþfðnÞ2 nm1 Rn mfð
s
Þds
6 ðnmÞ12 2ð3k23kþ1Þ þzmþn2 2
ð1kÞ h
þðnmÞð1kÞ2 2zmþn2 i12 1
nmkf0k22fðnÞfðmÞnm 2
1
2
612ðC
c
Þ ðnmÞ12 2ð3k23kþ1Þ þzmþn2 2ð1kÞ h
þðnmÞð1kÞ2 2zmþn2 i12
ð2:1Þ
holds.
Proof. We begin the proof of this theorem by defining the piece- wise continuous functionK:½m;n2!Rfork2 ½0;1as:
Kðz;
s
;kÞ ¼s
mkðnmÞ2 ; ifs
2 ½m;z;s
mþn2 ; ifs
2 ðz;mþnz;s
nþkðnmÞ2 ; ifs
2 ðmþnz;n;8>
>>
>>
><
>>
>>
>>
:
by Korkine’s identity Tðf;gÞ:¼ 1
2ðnmÞ2 Z n
m
Z n m
ðfð
s
Þ fðsÞÞðgðs
Þ gðsÞÞds
ds; ð2:2Þ we obtain1 nm
Z n m
Kðz;
s
;kÞf0ðs
Þds
1 nmZ n m
Kðz;
s
;kÞdt Z nm
f0ð
s
Þds
¼ 1
2ðnmÞ2 Z n
m
Z n m
ðKðz;
s
;kÞ Kðz;s;kÞÞðf0ðs
Þ f0ðsÞÞds
ds:ð2:3Þ
S.S. Dragomir, A.R. Khan, M. Khan et al. Journal of King Saud University – Science 34 (2022) 102057
2
Since
nm1
Rn
mKðz;
s
;kÞf0ðs
Þds
¼ ð1kÞfðzÞþfðmþnzÞ2 þkfðmÞþfðnÞ2 nm1 Rn
mfð
s
Þds
; RnmKðz;
s
;kÞdt¼0;then by(2.3)we get the following identity ð1kÞfðzÞþfðmþnzÞ
2 þkfðmÞþfðnÞ2 nm1 Rn mfð
s
Þds
¼2ðnmÞ1 2
Rn m
Rn
mðKðz;
s
;kÞ Kðz;s;kÞÞðf0ðs
Þ f0ðsÞÞds
ds; ð2:4Þ8z2 ½mþknm2 ;mþn2 andk2 ½0;1.
By applying Cauchy-Schwartz inequality for double integrals, we can write
1 2ðnmÞ2
Rn m
Rn
mðKðz;
s
;kÞ Kðz;s;kÞÞðf0ðs
Þ f0ðsÞÞds
ds
6 2ðnmÞ1 2
Rn m
Rn
mðKðz;
s
;kÞ Kðz;s;kÞÞ2ds
ds12
2ðnmÞ1 2
Rn m
Rn
mðf0ð
s
Þ f0ðsÞÞ2ds
ds12
:
ð2:5Þ
However
1 2ðnmÞ2
Rn m
Rn
mðKðz;
s
;kÞ Kðz;s;kÞÞ2ds
ds¼ðnmÞ1 Rn
mK2ðz;
s
;kÞdt nm1 RnmKðz;
s
;kÞds
2
¼ðnmÞ1 23 zmknm2 3
zmþn2 3
þk3ðnmÞ12 3
h i
:
ð2:6Þ
Consider above terms in the following and simplifying:
zmknm2
3
zmþn2 3
¼ðnmÞ8 3ð1kÞ3þ32zmþn2 2
ðnmÞð1kÞ þ34ðnmÞ2ð1kÞ2zmþn2
;
ð2:7Þ
and 1 2ðnmÞ2
Z n
m
Z n
m
ðf0ð
s
Þ f0ðsÞÞ2ds
ds¼ 1ðnmÞk kf0 22 fðnÞ fðmÞ nm
2
: ð2:8Þ Using(2.4), (2.6), (2.7) and (2.8), we get the 1st inequality of (2.1). Since
c
6f0ðs
Þ6Calmost everywhere fors
2 ½m;n, by apply- ing Grüss inequality(1.2)we get06 1 nm
Zn m
ðf0ð
s
ÞÞ2dt 1 nmZ n m
f0ð
s
Þds
2
61
4ðC
c
Þ2; ð2:9Þ which completes the proof of last inequality of(2.1). hFollowing remark (Remark 1 of Barnett et al. (2000)) is also valid for our main result.
Remark 2.2. SinceL1½m;n L2½m;n(and the inclusion is strict), then we remark that the inequality(2.1)can be applied also for the mappings f whose derivatives are unbounded on ðm;nÞ, but f02L2½m;n.
Remark 2.3. Since 3k23kþ161;8 k2 ½0;1and this is mini- mum whenk¼12. Therefore,(2.1) captures various special cases of main result which is obtained by authors of article (Barnett et al., 2000) as can be seen in remark given below.
Remark 2.4. We can get different special cases of(2.1)by using several values of k by fixing z¼mþn2 . Under the assumptions of Theorem 2.1following results (special cases) are valid:
Special Case I:Fork¼1(2.1)gives trapezoid inequality
fðmÞþfðnÞ 2 nm1 Rn
mfð
s
Þds
621ffiffi
p3hðnmÞkf0k22ðfðnÞ fðmÞÞ2i12 641ffiffi
p3ðC
c
ÞðnmÞ;which is Remark 3.2ðiÞofZafar (2010).
Special Case II:Fork¼0(2.1)gives mid-point ineqality fmþn2
nm1 Rn mfð
s
Þds
62p1ffiffi3hðnmÞkf0k22ðfðnÞ fðmÞÞ2i1
2
641ffiffi
p3ðC
c
ÞðnmÞ:which is Corollary 1 ofBarnett et al. (2000)and Remark 3.2ðiiÞof Zafar (2010).
Special Case III:Fork¼12(2.1)gives averaged mid-point and trapezoid inequality
fðmÞþ2fð Þmþn2 þfðnÞ
4 nm1 Rn
mfð
s
Þds
641ffiffi
p3hðnmÞkf0k22ðfðnÞ fðmÞÞ2i12 681ffiffi
p3ðC
c
ÞðnmÞ:which is Remark 3.2ðiiiÞofZafar (2010).
Special Case IV: For k¼13 (2.1) gives a variant of Simpson’s inequality for differentiable functionf
fðmÞþ4fð Þmþn2 þfðnÞ
6 nm1 Rn
mfð
s
Þds
616hðnmÞkf0k22ðfðnÞ fðmÞÞ2i12 6121ðC
c
ÞðnmÞ:which is Remark 3.2ði
v
ÞofZafar (2010).3. Application to probability theory
Suppose random variable ‘Z’ be continuous with PDF f:½m;n !Rþand CDFU:½m;n ! ½0;1is defined as
UðzÞ ¼Z z
m
fð
s
Þds
; z2 mþknm 2 ;mþn2
h i
; and
EðZÞ ¼ Z n
m
s
fðs
Þds
;is expectation of random variable ‘Z’ on½m;n. Then we have follow- ing result:
Theorem 3.1. Let the suppositions ofTheorem2.1be valid and if PDF f2L2½m;n, then
ð1kÞUðzÞ þUðmþnzÞ
2 þk2nEðZÞnm
6 1
nm
ðnmÞ2
12 ð3k23kþ1Þ þ zmþn 2
2
ð1kÞ
"
þðnmÞð1kÞ2
2 zmþn
2
#12
ðnmÞkU0k221
h i12
6ðHhÞ 2
ðnmÞ2
12 ð3k23kþ1Þ þ zmþn 2
2
ð1kÞ
"
þðnmÞð1kÞ2
2 zmþn
2
#12
;
ð3:1Þ
where h6U0ð
s
Þ6H,8s
2 ½m;n.Proof.Putf¼Uin(2.1)we obtain(3.2), by applying the identity Z n
m Uð
s
Þds
¼nEðZÞ where UðmÞ ¼0; UðnÞ ¼1:h
Corollary 3.2.Under the assumptions as stated inTheorem3.1, if we put z¼mþn2 , then
ð1kÞU mþn2
þ2knEðZÞnm
62p1ffiffi3ð3k23kþ1Þ12hðnmÞkU0k221i12 6ðnmÞ4 ffiffi
p3 ð3k23kþ1Þ12ðHhÞ hold for h6U0ð
s
Þ6H8s
2 ½m;n.Remark 3.3.The Corollary 3.2 is in fact Corollary 3.1 of Zafar (2010).
4. Application to special means
Before we proceed further we need here some definitions of special means.
Special Means:These means can be found inZafar (2010).
(a) Arithmetic Mean A¼mþn
2 ; m;nP0:
(b) Geometric Mean G¼Gðm;nÞ ¼ ffiffiffiffiffiffiffi
pmn
; m;nP0:
(c) Harmonic Mean H¼Hðm;nÞ ¼ 2
1
mþ1n; m;n>0:
(d) Logarithmic Mean
L¼Lðm;nÞ ¼
m; if m¼n
lnnlnnmm; if m–n;
8>
<
>: m;n>0:
(e) Identric Mean
I¼Iðm;nÞ ¼
m; if m¼n ln ð Þmmnn nm1
e
!
; if m–n;
8>
><
>>
: m;n>0:
(f)p-Logarithmic Mean
Lp¼Lpðm;nÞ ¼
m; if m¼n
npþ1mpþ1 ðpþ1ÞðnmÞ
1p
; if m–n;
8>
><
>>
:
wherep2Rn f1;0g;m;n>0. It is known that ‘‘Lp is monotoni- cally increasing overp2R”, ‘‘L0¼I” and ‘‘L1¼L”.
Example 4.1. ConsiderfðzÞ ¼zp;p2Rn f1;0g;then for n>m 1
nm Z n
m
fð
s
Þds
¼Lppðm;nÞ;fðnÞ fðmÞ
nm ¼pLp1p1ðm;nÞ;
fðmÞ þfðnÞ
2 ¼Aðmp;npÞ;
mþn 2 ¼A
and 1
nmkf0k22¼ 1 nm
Z n m
jf0ð
s
Þj2dt¼p2L2ðp1Þ2ðp1Þ; wherez2 ½mþknm2 ;mþn2 .
Therefore,(2.1)becomes
ð1kÞzpþðmþnzÞ2 pþkAðmp;npÞ Lpp
jpjhðnmÞ122ð3k23kþ1Þ þ ðzAÞ2ð1kÞ þðnmÞð1kÞ2 2ðzAÞi12
L2ðp1Þ2ðp1ÞL2ðp1Þðp1Þ h i12
: ð4:1Þ
Choosez¼Ain(4.1), get ð1kÞApþkAðmp;npÞ Lpp
6jpjnm2 ffiffi
p3ð3k23kþ1Þ12hL2ðp1Þ2ðp1ÞL2ðp1Þðp1Þi12
;
which is minimum fork¼12. Moreover fork¼1 Aðmp;npÞ Lpp
6nm
2 ffiffiffi
p jpj3 hL2ðp1Þ2ðp1ÞL2ðp1Þðp1Þ i12 :
Example 4.2. ConsiderfðzÞ ¼1z; z–0, then
nm1
Z n m
fð
s
Þds
¼ L1ðm;nÞ;fðnÞfðmÞ
nm ¼ G12;
fðmÞþfðnÞ
2 ¼ A
G2;
1 nm
Z n m
jf0ð
s
Þj2dt¼ m23mþmnþn3n3 2and nm1 Z n
m
jf0ð
s
Þj2dt fðnÞ fðmÞ nm2
¼ ðnmÞ3m3n32¼ðnmÞ2
3G6 ; wherez2 ½mþknm2 ;mþn2 ð0;1Þ.
S.S. Dragomir, A.R. Khan, M. Khan et al. Journal of King Saud University – Science 34 (2022) 102057
4
Therefore,(2.1)becomes
ð1kÞ
2 1
zþðmþnzÞ1
þkGA21L
6hðnmÞ122ð3k23kþ1Þ þ ðzAÞ2ð1kÞ
þðnmÞð1kÞ2 2ðzAÞi12ðnmÞ ffiffi3
pG3: ð4:2Þ
If we choose z = A in(4.2), we get ð1kÞ1
AþkA G21
L
6ðnmÞ2
6G3 ð3k23kþ1Þ12: Fork¼1
A G21
L
6ðnmÞ2 6G3 :
Example 4.3.ConsiderfðzÞ ¼lnz;z>0, then
1 nm
Z n m
fð
s
Þds
¼ lnðIðm;nÞÞ;fðnÞfðmÞ nm ¼ 1L;
fðmÞþfðnÞ
2 ¼ lnG;
nm1
Z n m
jf0ð
s
Þj2dt¼ G12 and1 nm
Zn m
jf0ð
s
Þj2dt fðnÞ fðmÞ nm2
¼ L2G2
L2G2 ; wherez2 ½mþknm2 ;mþn2 ð0;1Þ.
Therefore,(2.1)becomes ln ðzðmþnzÞÞ
ð1kÞ 2 Gk I
6hðnmÞ122ð3k23kþ1Þ þ ðzAÞ2ð1kÞ þðnmÞð1kÞ2 2ðzAÞi1
2 ðL2G2Þ12 LG : Forz¼A
ln Að1kÞGk I !
6ðnmÞ 2 ffiffiffi
p3
LGð3k23kþ1ÞðL2G2Þ1
2:
Fork¼1 ln G
I
6ðnmÞ 2 ffiffiffi
p3
LGðL2G2Þ12:
5. Application to numerical integration
To get the composite quadrature rules, we have to let Ij:m¼z0<z1<. . .<zj1<zj¼nbe the partision of the interval
½m;n;hj¼zjþ1zj; k2 ½0;1;zjþkh2j6
g
j6zjþz2jþ1;j2 f0;. . .; i1g, then the following results hold:Theorem 5.1. If
c
6 f0ðs
Þ 6 C almost everywhere fors
2 ½zjþkh2j;zjþ1(j2 f0;. . .;i1g), then under the assumptions ofTheorem2.1the following quadrature formula holds Z n
m
fð
s
Þds
¼Qðf;f0;Ij;g
;kÞ þRðf;f0;Ij;g
;kÞ; ð5:1Þ whereQðf;f0;Ij;
g
;kÞ ¼Pi1j¼0hjhð1kÞfðgjÞþfðzj2þzjþ1gjÞþkfðzjÞþfðz2 jþ1Þi ð5:2Þ
and remainder R satisfies the estimate
jRðf;f0;Ij;g;kÞj6Pi1
j¼0 h2j
12ð3k23kþ1Þ þgjzjþz2jþ12
ð1kÞ
þhjð1kÞ2 2gjzjþz2jþ1i12
hjkf0k22fðzjþ1Þ fðzjÞ2
h i12
612ðCcÞPi1
j¼0
hj h2j
12ð3k23kþ1Þ þgjzjþz2jþ12
ð1kÞ
þhjð1kÞ2 2gjzjþz2jþ1i12 :
ð5:3Þ
Proof. By using inequalities (2.4), (2.5) and (2.9) on zjþkh2j6
g
j6zjþz2jþ1and summing overjfrom 0 toi1, then we get required result. hBy putting several values ofkand by fixing
g
j¼zjþz2jþ1, under the assumptions ofTheorem 5.1 following results (special cases) are valid.Special Case I:Putk¼1 in(5.2) and (5.3), we have Q f;f0;Ij;zjþzjþ1
2 ;1
¼1 2
Xi1
j¼0
hjðfðzjÞ þfðzjþ1ÞÞ
and
jRf;f0;Ij;zjþz2jþ1;1 j 621ffiffi
p3Xi1
j¼0
hjhhjkf0k22fðzjþ1Þ fðzjÞ2i12 641ffiffi
p3ðC
c
ÞXi1j¼0
h2j:
Special Case II:Putk¼0 in(5.2) and (5.3), we have Q f;f0;Ij;zjþzjþ1
2
¼Xi1
j¼0
hjfðzjþzjþ1
2 Þ and
jRf;f0;Ij;zjþz2jþ1 j 621ffiffi
p3Pi1
j¼0
hjhhjkf0k22fðzjþ1Þ fðzjÞ2i12 641ffiffi
p3ðC
c
ÞPi1j¼0
h2j:
Special Case III:Putk¼12in(5.2) and (5.3), we have Q f;f0;Ij;zjþzjþ1
2 ;1 2
¼1 4
Xi1
j¼0
hj fðzjÞ þ2fðzjþzjþ1
2 Þ þfðzjþ1Þ
and
jRf;f0;Ij;zjþz2jþ1;12 j 64p1ffiffi3Pi1
j¼0
hjhhjkf0k22fðzjþ1Þ fðzjÞ2i1
268p1ffiffi3ðC
c
ÞPi1j¼0
h2j:
Special Case IV:Putk¼13in(5.2) and (5.3), we have Q f;f0;Ij;zjþzjþ1
2 ;1 3
¼1 6
Xi1
j¼0
hj fðzjÞ þ4fðzjþzjþ1
2 Þ þfðzjþ1Þ
and
jRf;f0;Ij;zjþz2jþ1;13 j 616Pi1
j¼0hjhhjkf0k22fðzjþ1Þ fðzjÞ2i12
6121ðC
c
ÞPi1j¼0h2j:
6. Conclusion
Using three step kernel, we have obtained new generalized Ostrowski-Grüss type inequalities(2.1)which is a variant of(1.4) which was obtained in article (Barnett et al., 2000). By fixing
z¼mþn2 and by choosing different values of parameterkwe cap- tured many results stated in Barnett et al. (2000) and Zafar (2010). We also got different important results from our main results as special cases such as trapezoidal inequality, mid-point inequality, averaged mid-point and trapezoidal inequality and Simpson’s inequality. Moreover, applications are deduced for prob- ability theory, special means and numerical integration.
Conflict of Interest:Authors declared: No conflict of interest.
Acknowledgment
The research of the Second Author is financially supported by the Dean’s Science Research Grant 2021-2022, University of Karachi, with grant number, KURP Award Letter No. 161/2021-22.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in the online version, athttps://doi.org/10.1016/j.jksus.2022.102057.
References
Anastassiou, G.A., 1997. Multivariate Ostrowski type inequalities. Acta. Math.
Hungar. 76, 267–278.
Barnett, N.S., Dragomir, S.S., Sofo, A., 2001. Better bounds for an inequality of Ostrowski type with applications, Preprint RGMIA Res. Rep. Coll. 3 no. 1, (2000), Article 11, Demonstratio Math. 34(3), 533–542.
Cheng, X.L., 2001. Improvement of some Ostrowski-Grüss type inequalities.
Comput. Math. Appl. 42 (1/2), 109–114.
Dragomir, S.S., Wang, S., 1997. An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules. Comput. Math. Appl. 33 (11), 16–20.
Grüss, G., 1935. Über das Maximum des Absoluten Betrages von
½1=ðnmÞRn
mfðxÞgðxÞdx ½1=ðnmÞ2Rn mfðxÞdxRn
mgðxÞdx. Math. Z. 39 (1), 215–226.
Irshad, Nazia, Khan, Asif R., 2017. Some Applications of Quadrature Rules for Mappings onLp½u;vSpace via Ostrowski-type Inequality. J. Num. Anal. Approx.
Theory 46(2), 141–149.
Liu, Zheng, 2008. Some Ostrowski type inequalities. Math. Comput. Model. 48, 949–
960.
Matic´, M., Pecaric, J.E., Ujevic´, N., 2000. Improvement and further generalization of some inequalities of Ostrowski-Grüss type. Comput. Math. Appl. 39 (3/4), 161–
175.
Matic´, M., Pecˇaric´, J.E., Ujevic´, N., 2000. Improvement and further generalization of inequalities of Ostrowski-Grüss type. Comput. Math. Appl. 39, 161–175.
Milovanovic, G.V., Pecaric, J.E., 1976. On generalization of the inequality of A.
Ostrowski and some related applications, Univ. Beograd Publ., Elektrotehn. Fak.
Ser. Mat. Fiz. No 544–576, 155–158.
Mitrinovic´, D.S., Pecˇaric´, J.E., Fink, A.M., 1994. Inequalities for Functions and Their Integrals and Derivatives. Kluwer Academic Publishers, Dordrecht.
Shaikh, Muhammad Awais, Khan, Asif R., Mehmood, Faraz. Estimates for Weighted Ostrowski-Grüss Type Inequalities with Applications, Analysis–De Gruyter, to appear.
Ostrowski, A., 1938. Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert. Comment. Math. Helv. 10, 226–227.
Zafar, F., 2010. Some Generalizations of Ostrowski Inequalities and Their Applications to Numerical Integration and Special means (PhD Dissertation).
Bahauddin Zakariya University Multan, Pakistan.
Zafar, Fiza, Mir, Nazir Ahmad, 2010. A generalization of Ostrowski-Grüss type inequality for first differentiable mappings. Tamsui Oxford J. Math. Sci. 26(1), 61–76.
S.S. Dragomir, A.R. Khan, M. Khan et al. Journal of King Saud University – Science 34 (2022) 102057
6