ContentslistsavailableatScienceDirect
Chaos, Solitons and Fractals
Nonlinear Science,andNonequilibrium andComplexPhenomena journalhomepage:www.elsevier.com/locate/chaos
Mathematical analysis of a two-strain disease model with amplification
Md Abdul Kuddus
a,b,e,∗, Emma S. McBryde
a,b, Adeshina I. Adekunle
a, Lisa J. White
c,d, Michael T. Meehan
aaAustralian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD
bCollege of Medicine and Dentistry, James Cook University, Townsville, QLD
cMahidol Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
dCentre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
eDepartment of Mathematics, University of Rajshahi, Rajshahi, 6205, Bangladesh
a rt i c l e i nf o
Article history:
Received 19 February 2020 Revised 19 November 2020 Accepted 14 December 2020
Keywords:
drug resistance multi-strain stability analysis
a b s t r a c t
We investigate a two-strain disease model with amplification to simulate the prevalence of drug- susceptible (s) and drug-resistant (m) disease strains. Drug resistance first emerges when drug- susceptible strains mutateand becomedrug-resistant, possiblyas aconsequenceof inadequatetreat- ment,i.e.amplification.Inthiscase,thedrug-susceptibleanddrug-resistantstrainsarecoupled.Weper- formadynamicalanalysisoftheresultingsystemand findthatthemodel containsthreeequilibrium points:adisease-freeequilibrium;amono-existentdisease-endemicequilibriumatwhichonlythedrug- resistantstrainpersists;andaco-existentdisease-endemicequilibriumwhereboththedrug-susceptible and drug-resistantstrainspersist.Wefoundtwo basicreproductionnumbers:one associatedwiththe drug-susceptiblestrain (R0s);theotherwiththedrug-resistantstrain (R0m),andshowedthatatleast oneofthestrainscanspreadinapopulationifmax[R0s,R0m]>1.Furthermore,wealsoshowedthatif R0m>max[R0s,1],thedrug-susceptiblestraindiesoutbutthedrug-resistantstrainpersistsinthepop- ulation(mono-existentequilibrium);howeverif R0s>max[R0m,1],thenboththedrug-susceptibleand drug-resistantstrainspersistinthepopulation(co-existentequilibrium).Weconductedalocalstability analysisofthesystemequilibriumpointsusingtheRouth-Hurwitzconditionsandaglobalstabilityanal- ysisusingappropriateLyapunovfunctions.Sensitivityanalysiswasusedtoidentifythekeymodelparam- etersthatdrivetransmissionthroughcalculationofthepartialrankcorrelationcoefficients(PRCCs).We foundthatthecontactrateofbothstrainshadthelargestinfluenceonprevalence.Wealsoinvestigated theimpactofamplificationand treatment/recoveryratesofbothstrainsontheequilibrium prevalence ofinfection;resultssuggestthatpoorqualitytreatment/recoverymakescoexistencemorelikelyandin- creasestherelativeabundanceofresistantinfections.
© 2020TheAuthor(s).PublishedbyElsevierLtd.
ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1. Introduction
Many pathogenshave severalcirculatingstrains.The presence of drug-resistant strains of a pathogen often follows soon af- ter a new treatment becomesavailable. This can be dueto sub- therapeutic druglevelswhichmayefficientlykilldrug-susceptible pathogens whilstallowing drug-resistantsub-populationstogrow [1].Thisacquiredresistance,whichcanresultfromincorrecttreat-
∗Corresponding author. Md. Abdul Kuddus, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD.
E-mail address: [email protected] (M.A. Kuddus).
ment, poor adherence or malabsorption, is called amplification [2–4].Oneofthemajorchallengesinpreventingthespreadofin- fectious diseasesis tocontrol thegenetic variationsofpathogens throughpropertreatmentregimens[5,6].
Mathematical models can improve our understanding of ge- netic variations ofinfectious pathogens aswell asthose compo- nentsthataresignificanttoinfectiousdiseasediagnosis,andtreat- ment [7–13]. Mathematical models can also be used to improve healthpolicy andinfectious diseasemonitoringplansbyidentify- ing thresholds whichmust be reachedin orderto achieve elimi- nation[13–15].For example,analytical solutions, numericalsolu- tions and stability analyses of mathematical models can identify
https://doi.org/10.1016/j.chaos.2020.110594
0960-0779/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
regionsintheparameterspacewherethevariousasymptoticstates are stable orunstable, thus allowing usto predict the long-term behaviour of thesystem[13,14,16]. Further,sensitivity analysisof a mathematical model allows usto discover the parameters that havethegreatestinfluenceonthemodeloutputs[14,17].
The growingthreat ofdrug-resistantpathogenstrainspresents a significant challenge throughout the world, particularly in de- veloping countries and those with lower socio-economic status [18]. Once drug-resistant strains have emerged in a population, primary transmissionof thesestrains may alsocontribute to the disease burden (in addition to amplification) [19].Recent studies [20–24] haveshownthat drug-resistantstrainscaninsomecases possesshighervirulencetotransmitdiseasethandrug-susceptible strains, and those individuals infected with a drug-resistant strain have the highest mortality rate, e.g. tuberculosis and HIV [25,26].
Toexaminethethreatposedbygeneticvariationsofpathogens, we present a two-strain (drug-susceptible, and drug-resistant) Susceptible-Infected-Recovered(SIR)epidemicmodelwithcoupled infectious compartments anduseit to investigatethe emergence andspreadofmutatedstrainsofinfectiousdiseases. Weconsider the possibility that an individual’s position changes from drug- susceptibleatinitialpresentationtoresistantatfollow-up.Thisis the modeby which drugresistancefirst emergesin apopulation andisdesignedtoreproducethephenotypicphenomenonofam- plification.Themodelcanbeappliedtoinvestigatetheco-existent orcompetitiveexclusivephenomenaamongthestrains.Wechoose the SIRmodel inthisstudyinordertomodel themanydiseases that haveaprotracted infectiousperiodwithtreatment–including hepatitis C andHIV. Here theremovedcompartment“R” is tobe appliedbroadlytothosepeoplewhoareneitherinfectiousnorsus- ceptible, including people in treatment, isolation, no longer con- tactingothersordead.Inthisway,webelievethatourmodelcap- turesmanyoftheinfectiousagentsthataretraditionallymodelled bySusceptible(S)toInfected(I)models.
Explicitly, in this paper we perform a rigorous analytical and numerical analysis of the proposed two- strain model properties and solutions from both the mathematical and biological view- points.Foreach,weusethenext-generationmatrixmethodtode- termineanalyticexpressionsforthebasicreproductionnumbersof thedrug-susceptibleanddrug-resistantstrainsandfindthatthese are importantdeterminantsforregulatingsystemdynamics.With afocusontheearlyandlate-timebehaviourofthesystem,weout- linethe requiredconditionsfordiseasefade-out,infectionmono- existence,andco-existence.
To supplement andvalidate the analytic analysis, we use nu- merical techniques tosolve the modelequationsand explorethe epidemic trajectory fora range of possibleparameter values and initial conditions. The local stability of the three system equi- libria is examined using the Routh-Hurwitz conditions and the globalstabilityofthe disease-free equilibriumandmono-existent disease-endemic equilibrium is examined using appropriate Lya- punovfunctions. Followingthis, we performa sensitivityanalysis to investigatethe modelparameters that have thegreatest influ- enceondiseaseprevalence.
The remainder of this paper is constructed as follows: in section2wepresentthetwo-strainSIRmodelwithdifferentialin- fectivity and amplification,and verify the boundedness andpos- itivity of solutions as well as the existence of several equilibria.
Local andglobal stabilityanalyses ofthe equilibriaarepresented in section 3. Insection 4 we discussa sensitivity analysisof the model outputs. We then provide numerical simulations to sup- port analyticresultsinsection 5.Finally,insection6,we provide a summary ofour outcomes, discusstheir importance forpublic health policy and propose guidelines for future disease manage- mentefforts.
Fig. 1. Flow chart of the two-strain SIR model showing the four infection states, and the per-capita transition rates in and out of each state (not shown: the constant recruitment rate into the susceptible compartment S). Subscripts s and m denote drug-susceptible and drug-resistant quantities respectively.
2. Modeldescriptionandanalysis
Modelequations:
We developed a dynamic two-strainSIR modelfor the trans- mission of drug-susceptible and drug-resistant infections, where the total populationis divided into foursubclasses: S− suscepti- bleindividuals;Is – individualsinfectedwiththedrug-susceptible strain; Im – individuals infected with the drug-resistant strain;
andR–recovered individuals,who are assumedtohaveimmunity againstbothstrains.ThusthetotalpopulationnumberN(t)attime tis
N
(
t)
=S(
t)
+Is(
t)
+Im(
t)
+R(
t)
. (1)We also introduced the following parameters: – constant recruitment rate into the susceptible class through birth or im- migration1;
μ
–natural per-capita death rate across the entirepopulation;
β
s (β
m) – effective contact ratebetween individuals with drug-susceptible (drug-resistant) infection andsusceptibles;ω
s (ω
m)–per-capita treatment/recovery rate for drug-susceptible (drug-resistant)infectedindividuals;φ
s(φ
m)−disease-relatedper- capita death rate for drug-susceptible (drug-resistant) infected individuals;ρ
–proportion of individuals who amplify from the drug-susceptible strain to the drug-resistant strain during treat- ment/recovery. We assumed the proportion of individuals who amplify–duetoincompletetreatmentorlackofcomplianceinthe use of first-line drugs–move directly from the drug-susceptible compartment Is into the drug-resistant compartment Im. The modelstructureisillustratedinFig.1.Fromtheaforementioned,thepopulationsineachdiseasestate aredeterminedbythefollowingsystemofnonlinearordinarydif- ferentialequations:
S˙ =
−
μ
S−β
sIsS−β
mImS, (2) I˙s=β
sIsS−( ω
s+φ
s+μ )
Is, (3) I˙m=ρω
sIs+β
mImS−( ω
m+φ
m+μ )
Im, (4)1Data strongly suggest that the absolute number of births globally has been ap- proximately constant for the last 30 years and is predicted to remain constant for the next 30 years. Therefore, within the timescale of an SIR-type infection it is rea- sonable to assume a constant growth rate ( https://population.un.org/wpp/Graphs/
900 ).
R˙ =
(
1−ρ ) ω
sIs+ω
mIm−μ
R. (5)Given non-negative initial conditions for the system above, it isstraightforwardto showthateach ofthestatevariablesremain non-negative for all t>0. Moreover, summing equations (2)–(5) wefindthatthesizeofthetotalpopulation,N(t),satisfies N˙
(
t)
≤−
μ
N(
t)
.Integratingthisinequalitywefind N
(
t)
≤μ
+N(
0)
e−μt.This shows that the total population size N(t) is bounded in this caseand that it naturallyfollows that each ofthe compart- mentstates(S, Is,Im,R)arealsobounded.
Notethat equations(2)–(4)areindependent ofthesizeofthe recoveredpopulation R(t);therefore,ifweonlywishtotrackdis- ease incidenceandprevalence, wecanfocus ourattentiononthe followingreducedsystem(6)–(8):
S˙ =
−
μ
S−β
sIsS−β
mImS, (6)I˙s=
( β
sS−χ
s)
Is, (7)I˙m=
ρω
sIs+β
mImS−χ
mIm (8)where
χ
s=ω
s+φ
s+μ
andχ
m=ω
m+φ
m+μ
representtheto-talremovalratesfromtherespectiveinfectiouscompartments.
Giventhe positivityandboundednessof thesystemsolutions, wefindthatthefeasibleregionforequations(6)–(8)isgivenby D=
(
S, Is, Im)
∈R3+:S+Is+Im≤μ
(c)
whereDispositivelyinvariant.Therefore,inthisstudyweconsider thesystemofequations(6)–(8)intheset D.
2.1. Basicreproductionnumber
Herewe estimatethebasicreproductionnumberofthemodel (6)–(8). Inan epidemicmodel, the basicreproduction numberis theexpectednumberofsecondarycasescreatedbyasingleinfec- tious caseintroduced into a totally susceptiblepopulation. Ifthe basicreproductionnumberisgreaterthanone,thenumberofin- fectedindividuals growsandtheinfectiontypically showspersis- tentbehaviour.Conversely,ifthebasicreproductionnumberisless than one, the number of infective individuals typically tends to zero[12,27,28].Hereweusethenext-generationmatrixtechnique toestimatethebasicreproductionnumber(s)ofoursystem[28].
The reducedmodel(6)–(8) hastwo infectedstates:Is;andIm, andoneuninfectedstate: S.Attheinfection-freesteadystateI∗s= I∗m =0. Hence,from(6),intheabsenceofinfectionS∗=μ.
Linearizingthesystemabouttheinfection-freeequilibrium,we findthatequations(3)–(4)areclosed,such thatthelinearizedin- fectionsub-modelbecomes
I˙s=
( β
sS∗−χ
s)
Is, (9)I˙m=
ρω
sIs+β
mImS∗−χ
mIm. (10) Here, theODEs (9)and (10)describe theproduction ofnewly infected individualsandchanges inthe statesof alreadyinfected individuals.Bysetting xT=(Is, Im)T,whereTdenotestranspose,theinfec- tionsubsystemcanbewritteninthefollowingform:
˙
x=
(
T+)
x. (11)The matrix T contains the transmission component of equations (9) and (10) (i.e. the arrival of susceptible individuals intotheinfectedcompartmentsIsandIm) andthematrix con- tainstransitionsbetween,andoutoftheinfectedstates(i.e.recov- ery,amplificationanddeath).
Forthesubsystem(9)–(10),thesecomponentsaregivenrespec- tivelyby
T=
β
sS∗ 00
β
mS∗and
= −
χ
s 0ρω
s −χ
m. Thenext-generationmatrix,K,isthengivenby[27]
K=−T
−1= S∗βs
χs 0
S∗βmωsρ χsχm S
∗βm
χm
.
ThedominanteigenvaluesofKarethebasicreproductionnum- bersforthedrug-susceptible anddrug-resistantstrains;they rep- resenttheaveragenumberofnewinfectionsfromeachstrainpro- ducedbyoneinfectedindividual.Thelowertriangularstructureof Kallows ustoimmediatelyread off thebasicreproductionnum- bers for the drug-susceptible and drug-resistant strains respec- tivelyas:
R0s=S∗
β
sχ
s =β
sμχ
s(a) and
R0m= S∗
β
mχ
m =β
mμχ
m. (b)Interestinglywe findthatthebasicreproductionnumbersR0s andR0marebothindependentoftheamplificationrate
ρ
[29].2.1.1. Strainreplacement
ToinvestigatetherelativemagnitudeofR0s andR0m,whichis anticipatedtostronglyinfluencethesystemdynamics(seebelow), we introduce the parameters c and∈ which we respectively de- fineasthefitnesscost exactedonthetransmissibilityofstrain m relativetothat ofstrain s,andthereductionintreatment rateof strainmrelativetothatofstrains.Morespecifically,welet
β
m=(
1−c) β
sand
ω
m=(
1− ∈) ω
s.Ifwe assume that both R0s andR0m are greater than 1, then theconditionforresistantinfectionstoreplacesensitiveinfections isgivenby,
R0m>R0s.
Substitutingtheformulae(a)and(b)forthebasicreproduction numbersgives:
β
mω
m+φ
m+μ
>β
sω
s+φ
s+μ
.Assuming that
μ
≈0 (since it is very slow compared to the otherrates)andthatφ
m≈φ
syieldsthecondition(
1−c) β
s(
1− ∈) ω
s+φ
s >β
sω
s+φ
s,whichwecanrearrangetoobtain
∈>c
( ω
s+φ
s) ω
s .Theaboverelationshowsthattheresistant straincanoutcom- petethesusceptiblestrainiftheresistancelevel∈ishigh(which maybe the casefor drug-resistantindividuals). Alternatively, the resistantstrainwillbefitterthanthesusceptibleoneifthefitness costcissufficientlylow.
2.2. Systemproperties
2.2.1. Existenceofequilibria
Itisclearfromequations(6)–(8)thatadisease-freeequilibrium (denotedby E∗)alwaysexists:
E∗=
(
S∗, I∗s, I∗m)
=μ
, 0, 0. (12)
From equation (6)–(8) we can also derive the mono-existent endemic equilibrium point (denoted by E#) atwhich the drug- resistantstrainpersistsandthedrug-susceptiblestraindiesout:
E#=
S#,0,I#m , where
S#= S∗ R0m =
μ
R0m, I#s=0,I#m=μ (
R0m−1)
β
m .(13)
Inspecting(13)weseethatthemono-existentendemicequilib- riumE#=(S#,0,I#m)∈D(i.e.exists)if,andonlyifR0m≥1.
Finally,theco-existentendemicequilibriumofthesystem(6)–
(8)(denotedbyE†)isgivenby E†=
(
S†,I†s,Im†)
,where S†=
μ
R0s =S∗/R0s,I†s=
μ (
R0s−1) β
s ,I†m=
ρ
R0sω
sμ (
R0s−1) β
sχ
m(
R0s−R0m)
+ρ
R0sω
sβ
m,=
ρω
sR0sχ
m(
R0s−R0m) μ (
R0s−1) β
s .(14)
Thevariable inequation(14)isdefinedas
=
1+
ρω
sR0sβ
mβ
sχ
m(
R0s−R0m)
−1=
1+
ρω
sR0mχ
s(
R0s−R0m)
−1,
(d) and0< <1forR0s>R0m.Therefore,equation (14)showsthat the co-existent endemic equilibriumE†=(S†, I†s, I†m)∈D(i.e. ex- ists)if,andonlyifR0s>max[R0m, 1].
3. Stabilityanalysis
Sinceequations(2)–(4)areindependentofequation(5)(i.e.the evolution of S,Is andIm are independentof R(t)),wecan focus our attentionon the reducedsystem(6)–(8) to studythe persis- tence of theinfection. Toinvestigate stabilityofthe equilibria of equations(6)–(8),thefollowingresultsareestablished:
3.1. Infection-freeequilibrium
Lemma1. If R0=max[R0s, R0m]<1,thedisease-freeequilibrium E∗ of(6)–(8) islocallyandgloballyasymptoticallystable;if, how- ever,R0=max[R0s, R0m]>1,E∗isunstable.
Proof. :We considerthe Jacobian ofthesystem(6)–(8) whichis givenby
J=
−β
sIs−β
mIm−μ
−β
sS −β
mSβ
sIsβ
sS−χ
s 0β
mImρω
sβ
mS−χ
m.
Attheinfection-freeequilibriumpoint,E∗,thisreducesto J∗=
−μ
−β
sS∗ −β
mS∗ 0χ
s(
R0s−1)
0 0ρω
sχ
m(
R0m−1)
.
ThestructureofJ∗ allowsustoimmediatelyreadoff thethree eigenvalues,
λ
i,asλ
1=−μ
,λ
2=χ
s(
R0s−1)
andλ
3=χ
m(
R0m−1)
. (15)It iseasy to verify that all theeigenvalues (15) havenegative realparts forR0s<1 and R0m<1.Hence, thedisease-free equi- libriumE∗of(6)–(8)islocallyasymptoticallystableforR0s<1and R0m<1. If R0s>1 or R0m>1, at least one of the eigenvalues (15)hasapositiverealpartandE∗isunstable.
Now theglobal stabilityofthedisease-free equilibrium E∗ for R0s<1and R0m<1canbeinvestigated.First,fromequation(7), wehave
I˙s=
( β
sS−χ
s)
Is,whichcanbeintegratedtogive Is
(
t)
=Is(
0)
e∫t
0βsS(τ )dτ−χs t
(16) forall t≥0.
Substitutingintheupperbound S(t)≤μ=S∗,whichfollows immediatelyfromthedefinitionofD(equation(c)),weobtain Is
(
t)
≤Is(
0)
e(βsS∗−χs)t,≤Is
(
0)
eχs(R0s−1)t.It follows then that if R0s<1 we have Is(t)→0 as t→∞. Hence thehyperplane Is=0attracts all solutions of(6)–(8) orig- inatinginDwheneverR0s<1.
SinceIs(t)→0ast→∞forR0s<1,itfollowsthat
ρ ω
sIs(t)→ 0suchthatequation(8)reducestoI˙m=
β
mImS−χ
mIm.Following the same strategy for Im as we used above for Is
yields
Im
(
t)
≤Im(
0)
eχm(R0m−1)t.Similarly, if R0m<1, Im(t)→0 as t→∞ and the hyper- plane Im=0 attracts all solutions of(6)–(8) originatingin D.Fi- nally, it is straightforward to show that if Is→0, and Im→0, then S→S∗.Therefore E∗ is globally asymptotically stablewhen R0=max[R0s,R0m]<1.
3.2. Mono-existentendemicequilibrium
Lemma 2. If the boundary equilibrium E#=(S#,0,I#m) of the equations(6)—(8)exists andR0m>max[1,R0s],E# islocallyand globallyasymptoticallystable.
Proof. : We consider the Jacobian of the system (6)—(8) at the mono-existentendemicequilibriumpointE# whichisgivenby
J#=
⎛
⎝
−β
mI#m−μ
−β
sS# −β
mS#0 −χs(R0mR0m−R0s) 0
β
mI#mρω
s 0⎞
⎠
.Thestructure ofJ# allows ustoimmediatelyread off the first eigenvalue,
λ
1=−χ
s(R0mR0m−R0s) whichisnegativewhenever R0m>R0s. The remaining eigenvalues can be calculated asthe roots of thefollowingequation
λ
2+a1λ
+a2 =0 (17)where
a1=
β
mI#m+μ
=μ
R0m,a2=
β
m2I#mS#=μχ
m(
R0m−1)
.Forlocalstabilitywe mustensurethat theRouth-Hurwitzcri- teria[30]aresatisfied:
a1>0,and
a2>0, whichholdswheneverR0m>1.
Thus, by theRouth-Hurwitzcriteria, theboundary equilibrium E# islocally asymptoticallystablewhenever R0m>max[1, R0s]. Conversely,forE#∈D,itisunstablewhenR0m<R0s.
Now we prove E# is globally asymptotically stable if R0m>
max[1, R0s].Consideringequation(7)and(8),wehave
I˙s=
( β
sS−χ
s)
Is, (18)I˙m=
ρω
sIs+β
mImS−χ
mIm. (19)Following [31],first we divide equation (18)and (19)through byIsandImrespectivelytoobtain
dlogIs
dt =
β
sS−χ
s, (20)dlogIm
dt =
β
mS−χ
m+ρω
sIIsm. (21)
Rearrangingequations(20)and(21)tosolveforS weget S= 1
β
sdlogdtIs +χ
sβ
s =β
1mdlogdtIm +χ
mβ
m −ρω
sβ
m IIms (22)whichimmediatelyleadstothefollowinginequality:
1
β
sdlogIs
dt +
χ
sβ
s ≤ 1β
mdlogIm
dt +
χ
mβ
m.Integratingbothsidesoftheequationabovegives
Is(
t)
Is(
0)
β1seχβsst≤
Im(
t)
Im(
0)
β1meχβmmt
whichwecanrearrangetoobtain
Is(
t)
Is(
0)
β1s≤
Im(
t)
Im(
0)
β1me χm
βm−χβss t.
Next, we useequations (a)and (b)forthe basic reproduction numbers,torewritethisinequalityas
Is(
t)
Is(
0)
β1s≤
Im(
t)
Im(
0)
β1meS∗ 1
R0m−R10s
t.
Finally,sinceboth Is(t)andIm(t)arebounded,aswetakethe limitast→∞wefind:
tlim→∞
Is(
t)
Is(
0)
β1s≤lim
t→∞
Im(
t)
Im(
0)
β1meS∗ 1
R0m−R10s
t→0forR0m>R0s.
Hence the hyperplane Is=0 attracts all solutions of (6)–(8) when R0m>R0s.
To complete the globalstability proof, we show the endemic equilibriumE#isgloballyasymptoticallystableonthehyperplane Is=0byconstructingthefollowingLyapunovfunction[32]: V#=S−S#lnS+Im−I#mlnIm+C
where C=−
S#−S#lnS#+I#m−I#mlnI#m .
TakingthederivativeofV#(t)alongsystemtrajectoriesyields V˙#=
1−SS# S˙+
1−II#mm
I˙m,
=
1−SS#
(
−μ
S−β
mImS)
+1−II#mm
( β
mImS−χ
mIm)
,=
−
μ
S−β
mImS−SS#+
μ
S#+β
mImS#+β
mImS−χ
mIm−
β
mI#mS+χ
mI#m.First,wesubstituteintheidentity
=
μ
S#+β
mI#mS#, toobtainV˙#=
μ
S#+β
mI#mS#−μ
S−μ
S#SS# −β
mI#mS#S# S +μ
S#+
β
mImS#−χ
mIm−β
mI#mS+χ
mI#m,=
μ
S#2− S S#−S#
S
+
β
mI#mS#−β
mI#mS#S#S +
β
mImS#−
χ
mIm−β
mI#mS+χ
mI#m.
We cansimplify thisexpressionfurther by substitutingin the identity
β
mS#=χ
m togetV˙#=
μ
S#2− S S#−S#
S
+
χ
mI#m−χ
mI#mS#
S +
χ
mIm−χ
mIm−
χ
mI#mSS# +χ
mI#m,=
μ
S#2− S S#−S#
S
+
χ
mI#m2− S S# −S#
S
,
=
μ
S#+χ
mI#m 2− S S# −S#S
.
Sincethearithmeticmeanisgreater thanorequalto thegeo- metricmean,weobtainV˙#≤0.
Therefore,the mono-existent endemic equilibrium E# is glob- allyasymptoticallystableifR0m>1.
3.3. Co-existentendemicequilibrium
Lemma3. Ifthe endemic equilibriumE†=(S†, I†s, I†m) of equa- tions(6)—(8)exists,E†islocallyasymptoticallystable.
Proof. :WeconsidertheJacobianofthesystem(6)—(8)attheco- existentendemicequilibriumpointE†whichisgivenby
J†=
⎛
⎜ ⎝
−
β
sI†s−β
mI†m−μ
−β
sS† −β
mS†β
sI†sβ
sS†−χ
s 0β
mI†mρω
sβ
mS†−χ
m⎞
⎟ ⎠
.Tosimplifythisexpression,weusethefollowingidentities
−
β
sI†s−β
mI†m−μ
=−μ
R0s,−
β
sS†= −R0sχ
sS∗ S∗
R0s = −
χ
s,−
β
mS†= −R0mχ
mS∗ S∗
R0s = −
χ
mRR0m0s,
β
sI†s=β
sμ (
R0s−1)
β
s =μ (
R0s−1)
,β
mI†m=ρω
sχ
s(
R0sR−0mR0m) μ (
R0s−1)
,β
sS†−χ
s=χ
sβ
sS∗R0s
χ
s−1=
χ
s R0s
R0s −1
=χ
s(
1−1)
=0,β
mS†−χ
m=χ
mβ
mS∗χ
mR0s−1=
χ
mR0s
(
R0m−R0s)
where inthe fourthlinewe havesubstituted inthedefinition of giveninequation(d).ThisallowsustorewritethematrixJ† in thefollowingform:
J† =
⎛
⎝
−μ
R0s −χ
s −χ
m R0m R0sμ (
R0s−1)
0 0μ (
R0s−1) (
1−) ρ ω
sχ
m(R0mR−0sR0s)⎞
⎠
.To determine the stability of this matrix we use the Routh- Hurwitzcriteria,whichstatethattherealpartsoftherootsofthe characteristicpolynomialassociatedwithathreebythreematrixJ† arenegativeifA1>0, A2>0, A3>0,andA1A2>A3,whereA1=
−trace(J†),A2 representsthesumofthetwobytwoprincipalmi- norsofJ† andA3=−det(J†).
Condition1:ForthematrixJ†,wehave A1=−trace
J† =
μ
R0s+χ
m(
R0s−R0m)
R0s . Hence,A1 >0ifR0s>R0m.Condition2:
A2=
ρ ω0s χm ( R00m−R0s) R0s
+
−μR0s −χm RR0m0s
μ (R0s−1)(1− ) χm ( R0mR−R0s0s)
+
−μR0s −χs μ(R0s−1) 0
,
=μχm (R0s−R0m)+μχmRR0m0s(R0s−1)(1− )+μχs(R0s−1) . Recalling that 0< <1 for R0s>R0m, we see that A2>0 is satisfiedwhenever R0s>1andR0s>R0m.
Condition3:
A3=det
J† ,
=−
μ (
R0s−1)
−χ
sχ
mRR0m0sρ ω
sχ
m(R0mR−0sR0s),
=−
μ (
R0s−1)
χsχm (R0s−R0m)R0s +ρ ωsRχ0smR0m
,
=
μ (
R0s−1) χ
sχ
m(
R0s−R0m)
R0s 1+χsρ ω(R0ss−R0mR0m),
=
μ (
R0s−1) χ
sχ
m(
R0s−R0m)
R0s ,
=
μ χ
sχ
mR0s
(
R0s−1) (
R0s−R0m)
whereinthefifthlinewe havesubstituted inthedefinitionof given inequation (d).The conditionA3>0 istrueifR0s>1and R0s>R0m.
Finally, if we multiply the expressions for A1 and A2 it is straightforward to show that the conditionA1A2>A3 issatisfied when R0s>1 and R0s>R0m. Thus, by the Routh-Hurwitz crite- ria,theco-existentendemicequilibriumE†islocallyasymptotically stablewhenR0s>1andR0s>R0m.
4. Sensitivityanalysis
Recognizingthe relativeimportance ofthe variousrisk factors responsibleforthetransmissionofinfectiousdiseasesisessential.
The progressionofthe drug-resistantstrain andits incidenceand prevalencemustbeunderstoodinordertodeterminehowbestto decrease diseaseburden. Forthispurpose,wecalculated thepar- tial rank correlation coefficients(PRCCs)–which is a global sensi- tivityanalysistechniqueusingLatin HypercubeSampling(LHS)–of several keyoutput variables. Ineach casewe assigneda uniform distribution from0 to 3 times the baseline value for each input parametertogenerateatotalof100,000,000computationsofeach
Fig. 2. PRCC values depicting the sensitivities of the model output I swith respect to the input parameters βs, ωs, φs, βm, ωm, φmand ρ, when R 0s> max [ R 0m, 1 ] (i.e. co-existent endemic equilibrium E †).
Fig. 3. PRCC values depicting the sensitivities of the model output I mwith respect to the input parameters βs, ωs, φs, βm, ωm, φmand ρ, when R 0s> max [ R 0m, 1 ]]
(i.e. co-existent endemic equilibrium E †).
output variable of interest. Here the model outputs we consider arethe numberofinfectiousindividualsIs andIm andtheir total sum (Is+Im)atequilibrium.NotethatPRCCvaluesliebetween-1 and+1.Positive(negative)valuesimplyapositive(negative)corre- lationtothemodelparameterandoutcomes.Thebigger(smaller) theabsolutevalueofthePRCC,thegreater(lesser)thecorrelation oftheparametertothemodeloutcome.
Figs 2–4 display the correlation between Is, Im and (Is+Im) and the corresponding parameters
β
s,ω
s,φ
s,β
m,ω
m,φ
m andρ
when R0s>max[R0m, 1], that is, at the co-existent endemic equilibrium. From Figs 2–4, it is easy to perceive that Is and (Is+Im) have a strong positive correlation withβ
s and Im hasa weaker positive correlation with
β
s, implying that a positivechangeof
β
s willincrease Is, (Is+Im)andIm.Parametersω
s andφ
shaveanegativecorrelationwithIs,Imand(Is+Im).Inadditionβ
m has a negative correlation with Is and (Is+Im) but a strong positive correlationwithIm.Parametersω
m andφ
m havea posi- tive correlation withIs and (Is+Im) butstrongnegative correla- tionwithIm.Table 1
Description of model parameters
Parameters Description Estimated value References
A demographic parameter which represents the recruitment rate into the population 1
μ Per-capita death rate 701 per year [33]
βs The effective contact rate per unit time between susceptible and drug-susceptible infective individuals variable – βm The effective contact rate per unit time between susceptible and drug-resistant infective individuals variable – ωs The per-capita rate at which the drug-susceptible infected population progress to the recovery stage per
unit time as a result of treatment
0.290 per year [34]
ωm The per-capita rate at which the drug-resistant infected population progress to the recovery stage per unit
time as a result of treatment 0.145 per year Assume
ρ The proportion of amplification due to treatment default on first-line drug therapy 0.035 [35]
ϕs The per-capita rate at which the drug-susceptible infected population die from infection per unit time 0.37 over 3 years [35]
ϕm The per-capita rate at which the drug-resistant infected population die from infection per unit time 0.37 over 3 years [35]
Fig. 4. PRCC values depicting the sensitivities of the model output I s+ I mwith re- spect to the input parameters βs, ωs, φs, βm, ωm, φmand ρ, R 0s> max [ R 0m, 1 ]]
(i.e. co-existent endemic equilibrium E †).
Further, parameter
ρ
has a negative correlation with Is and (Is+Im) but a strong positive correlation with Im. Fig.5 repre- sentsthecorrelationbetweentheequilibriumvalueofIm andtheFig. 5. PRCC values depicting the sensitivities of the model output I m with respect to the input parameters βs, ωs, φs, βm, ωm, φmand ρ, when R 0m>
R 0sand R 0m> 1] (i.e. mono-existent endemic equilibrium E #).
correspondingmodelparameters
β
s,ω
s,φ
s,β
m,ω
m,φ
m andρ
when R0m>R0s and R0m>1 (i.e. at the mono-existent endemic equilibrium).Parameters
β
s,β
mandρ
(smallvalue notshowing)Fig. 6. Co-existent endemic equilibrium: R 0s> max [ R 0m, 1 ] . In this case both the drug-susceptible infection and drug-resistant infection persist in the population (black dot). All parameter values assume their baseline values given in Table 1 .
Fig. 7. Effect of amplification ( ρ) on the drug-susceptible (I s)prevalence and drug- resistant prevalence (I m). All parameter values assume their baseline values given in Table 1 .
havepositivePRCCvalues,implyingthatapositivechangeinthese parameterswillincrease Im.Incontrast,
ω
s,φ
s,ω
mandφ
m havenegativePRCC valuesand,thus, increasingtheses parameterswill consequentlydecrease Im.
5. Numericalsimulations
In this section, we carry out detailed numerical simulations (using theMatlabprogramminglanguage)to supporttheanalytic results and to assess the impact of amplification and the drug- susceptible treatment/recovery rateon equilibriumlevels oftotal prevalenceanddrug-resistantprevalence. Forillustrationwe have chosen baseline parametervaluesconsistentwithtuberculosis in- fection andtransmission [33–35].Inaccordancewiththeanalytic results we found three equilibriumpoints: thedisease-free equi- librium E∗; a mono-existentendemic equilibrium E#; anda co- existent endemic equilibrium E†. We used different initial condi- tionsforbothstrainsofallpopulationsandfoundthatifbothbasic reproduction numbers are less than one (i.e. max[R0s, R0m]<1) then the disease-free equilibrium is locally and globally asymp- totically stable. If R0m>max[R0s, 1], the drug-susceptible strain dies out butthe drug-resistant strain persists in the population.
Furthermore,ifR0s>max[R0m, 1],thenboththedrug-susceptible anddrug-resistantstrainspersistinthepopulation.
Fig. 6illustrates the stabilityofthe co-existent endemic equi- librium(i.e.when R0s>max[R0m,1]) bydepictingsystemtrajec- tories throughthe Is vsIm plane originatingfromdifferentinitial conditions. Inthissystemboth strains(IsandIm) persistbecause of the amplification pathway fromthe drug-susceptible strain to the drug-resistant strain. Fig. 7 depicts the effect of amplifica- tion (
ρ
) onequilibriumlevelsofdrug-susceptible prevalenceand drug-resistant prevalenceandshowsthat in thefirst region (ρ
0.6)thedrug-susceptibleprevalenceisinitiallydominantbutthat the drug-resistantprevalencerises withincreasingρ
.Eventually, forρ
0.6,the drug-resistant strain becomesdominantcourtesy oftheamplificationpathway.Fig.8,andFig.9showtheeffectofthedrug-susceptiblestrain treatment/recovery