a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.
A thesis presented in partial fulfilment of the requirement for the degree
MASTER OF TECHNOLOGY i n Biotechnology
At Massey University Palmerston North
New Zealand
SURAPONG NAVANKASATTUSAS 1973
ACKNOWLEDGEMENTS
The writer ~ishes to express his gratitude for the generous assistance and guidance which he received throughout this work,
witho~t whi ch thi s study would hRve been impossible.
The writer would lik0 to thank Professor R.L. Earle for his continual teaching and guidance throughout this study"
To Mr. R.E. Hendtlass , Chemistry, Biochemistry and
Biophysics Department, whose suggestions and contribution of the el ect rical circuits is deeply appreciat ed.
Than~s are also due to the staff of the Food Science and Biotechnology Faculty, Massey University, for their aid.
TABL
EOF CONTENTS
I .
SUMfvl ARY o • • • • • • • • • • • • • • o Cl • • • • • • • • • • • • • • • o • • • • • • • • •Page 1
II. INTRODUCTION
A. T
HERMAL PROCESSING IN GENERA
L•••••••••••••••• 3 B. PR OBLEM
SI
NFORM ULA TING
t.ND MANIPULATINGPROCESSING COND
ITION . . . 4 C. THE O
BJ
ECTIVE OF THIS STUDY•••••••••••• • ••••• 5
III .
LITERATURE SURVEY
A, K
INETICS OF THERNAL PR
OCESSING ... 6
1 • Reaction Rate Equation • • • • • • • • • • • • • • • • • 0 •
6
2. Temperature Dependency of Reaction
Rat e Constant ••••••••• ••••••••• ••••••••••
8
B.T
HERMAL PROCESSI
NGEVALUATION
• • • • • • • • • • . • • • • •13 C, ANALOGUE SYSTEM FOR THERi,iAL PROCESSING • • • • • • • 15
IV . THEORY
A, GENERATION OF REACTION
RATE FOLLmJING THE
ARRHENIUS
EQUATION ···~··· ··· ·· 171.
Thermistor Sensoro•W••··· ··· ·
172. Generntion of a Primary Reaction Rate
Following t he Arrhenius Equation
... ... 18
3.
Modification of the Primary ReactionRate Constant •••••••••••••••••••••••••••• 19
B.
INTEGRAT
ION OFTHE GENERATED REACTION RATE
20C-. CORRELt.TION O F A
NALOGUE
OUTPUTVOLTAGE
v0
WITH
PROGRESS OF IEREVERSIBLE REACTIO
N IN
THERMAL
PROCESSING ···~··•••••••·••••• · ··~~~~·· 22 1. Irreversible Unimolecular First-orderReactions ·•·'• ·• ... • . . . ~ .... . ...•. ·-··. . . . • • 22 2. Irreversible Bimolecular Second-order
Reactions -... . . -.. -. . . . ... . . .... ,.. . .
24 3.
Irreversible Trimolecular Third-orderReactions ... ~ .. -. . . ... ... . . . ... .. . .. . . . . . ... . . 27
4.
Irreversible Reaction ~ith Empirical Rate Equation of the n th Order5 .
The R8l~tionshtp of the Ratio of Frequi::ncy li'ac to1· and the Ratio of Reaction Rate Constants at a Constant '.i.'emperaturePage
30
31
V" AP:OARATUS
B,
REGUL~T~D FO~SR
surPLY
FOR THEANALOGUE SYSTEM
• ELECTRICAL A!'JALuGUl~SYSTEJvi
1. Primary R0action Rate Generator .•••.•.••• •. Analogue Multiplier
Analogue Litegr:itor
33 33 33
34
C. THERhAL PROCESSING
REACTOR
•••. , . . . • . . • • • . • • . • . •: 35 D. MEhSURING EQUIPMENT.
. ... ... .....
....
. ... ...36
1 ,,
v
01 trn et er () ,.., ti c 0 ( 0 0 0 0 t) ') • 0 & . . . , " a 0 • " 0 0 0 0 0 0 • 0 0 0 • 0 36 2. Potentiometer and ~hPrmocouple •••••••••••••36 3 .
Potentiornet1·i.c Recorders • • • • • • . . • • • . • . • . • . •3 6
VI. ?ROCEDURE
VII.
VIII.,
A.
ARRANGD!ENT
OFAPPARATUS
FOR EXP~RIMENTALTESTING OF 'I'HE ANALOGUE SYSTEM • • • • • • • • • • • • • • • • • 4 3 B. DETERMINATION OF GENERATED
PRIMARY REACTI ON
"RATE
v1 A'l' V.1-\RIOUS
TEMPERATURE
T •• , • • • •• • • • • •• • 11-3C. ~ETERMINATION
OF GENERATED SECONDARY REACTI
ON
RA':::'E v
2 AT VARIOUS TEMPERP'I'URE T , •••••••
o . . c. .. 44
D. TESTI
NG
OF THEANALOGUE
INTEGRATOR. ... ..
...44
E. A
PPLI
CATIONOF THE
ELECTRICALANALOGUE
INTH
ZRMhL
PROCESSING O • ~ t'l" • ••• • • •oo:o o•• ,. • • • •••••••RESULTS " • e 0 c 0 u • Q • 1 0 0 0 0 ,. " 0 0 ') 0 • (\ • • • • 0 (t " e • .• " • • • • • • • • 0 •
50
DISCUSSION OF
RESULTS
A 0 TES TI NG OF THE ANALOGUE SY STEM o • • • • , " • n • • • • • • • • 64 1. Generation of the Primary Reaction Rate v
1 . 64 2. Generation of the Reaction Rate v2 with
Application of the Analogue Multiplier ••••• 64 j. The Analogue Integrator •••• ••••••••••••••••
65
B. THE ANALOGUE .SYSTEM I N THERMAL PROCESSI NG
IX. CONCLUSIONS .., •• 0 0 0 0 0 0 0 • . ; • • • • • • • • • • - > • • · · ·
APP EI'ID IX .. . . ,, . . . • . . . • . .
BI BLI OG RAP HY . . . ., •••• ~ ... ., •••••••••
Page
67 88
90
101
Table VII.1
Table VII.2
Table VII.3
Table VII.4
Table VII.5
Table VII .6
Table VII.7
Table VII.8
Table VIII.1
LIST OF TABLES
Page
Results of Primary Reaction Rate v 1
Generated by the Analogue •••••• ••••.••• 51
Results of Reaction Rate v 2
Generated by Lpplication of Analogue
Multiplier (n=2) • ••. ••••••. •••• •••• •••• 52
Results of Reaction Rate v 2
Generated by Application of Analogue
Multiplier (n=4) • e • • • • • • • • • • • • o• • •• • • • • 53
Results of Reaction Rate v 2
Generated by Application of hnalogue
Multiplier (n=6) •• •••••••••••••••••••••
54
Results of Reaction Rate v 2
Generated by Application of Analogue
Multiplier (n=8) • n•• •• • • • o o•• • • • • •• • • • • 55
Results of Reaction Rate v 2
Generated by Application of hnalogue
Multiplier (n=10) •••• ••••••• •••••••••• • 56
Results of Reaction Rate v 2
Generated by Application of Analogue
Multiplier (n=12) •••••• ••••••• ••••••••• 57
Results of Reaction Rate v 2
Generated by Application of Analogue
Multiplier (n=16) •••••• •••••••• ••• •••• • 58
Summary of Results in Reaction Rate
Generation by the Analogue ••••••••••••• 70
Table VIII.2
Table VIII.3
Tabl e VIII.4
Table A.1
Table A.2
Table C.1
Measured Output Voltage Changes of Integrator at Various I nput Voltages
Comparison of Progr ess of the Thermal St erili zat ion Det ected by the Analogue and that by the Temperature-time
Page
71
Profil e ••o • • • • • • o • • • • • • • o • • • • ••o • • • • • • • 72
Comparison of Progress of the Thermal Destruction of the Chemical Species Detected by the Analogue and that by the Temperature-time Profile
Charact eri sticsof Copper-constantnn
73
Thermocouple ••••••••••••••••••••••••••• 91
Relationship of Inverse Absolute Temperature at Hot Junction and Electrical Potentinl of the Copper-
constantan Thermocouple 0 Cl • • • • • • • • • • • • • •
Pertinent Values Associ at ed wi th Analysi s of Exper imental Reaction Rates Generated
92
by the Analogue
e•••••••• •· ·· ·· · · · ··· · · ·
98Figure V .1
Fi gure V.2
Figure V.3
Fifjllre V
. 4
Fi gure Vo5
Figure VI.1
Figure VII.1
Figure VII.2
Figure VII.3
Figur e VII.4
LL3T OF FIGURES
Circuit Diagran of the Voltage
Regul~ted Power Supply ••• •••••••••••..•
Circuit Ding~am of the Primary
Page
38
Reaction R~te v1 Generator ~···••••••• 39
Circuit Di ·tgram of an Analogue
Multiplier.. . . . .... . . ... . .. . . . 40
Circuit Diagram of the Analogue
Integrator •.. ,, ...
o... . .... .. . .. . .. ...
41Dingram of Wiring Through the Door
of the Autoclave •n•••••·• ••••••••• ••••• 42
Arrangement of Apparatus for Testing
the Analogue
•n•••• ·· ··· ··· · · ··· ·
49Results of 11nalogue Integrator
Testing • • • :=» • • • • • • 0 . . . .. . . .. . . .. .. . . .
Output Voltage from the An~logue
System in Following the Progress cf the Sterilization of a Microorganism
Temperature and Time Profile in the Vicinity of the Sensor of the An~locue
59
60
in a Microbial Sterilization . . . 61
Output Voltage from the Analogue System in Following the Progress of the Thermal Destruction of the
Chemical Species •••••• ••••••••••••••••• 62
Figure VIIo5
Figure VIII .1
Figure VIII e2
Figure VIII .,3
Figure VIII.4
Figure VIII o5
Figure VII.6
Figure VIII.7
Figure VIII.8
Temperature and Time Profile in the Vicinity of the Sensor of the hnalogue in a Chemical Destruction
Reaction OO¥o•• • egeeo•oe • • • ••• • ••• • • • • • ••
Plot of the Primary Reaction Rate Generated by t he Analogue According
Page
to the Arrhenius Equation (n=1) ~ ·· ··· 74
Plot of the Reaction Rate Generated by the Analogue According to the
Arrhenius Equation (n=2) •••.••••••.•• ••• 75
Plot of the Reaction Rate Genernted by the Analogue hCcording to the
Arrhenius Equation (n=4) ••. •••••••••.••• 76
Plot of the Reaction Rate Generated by the Analogue According to the Arrhenius
Equation (n=6) •••• ••••••.•. .• •••.••••••• 77
Plot of the ReAction Rate Generated by the Analogue According to the Arrhenius
Equation (n=8) ••. •••. •••.•••.•••••• •••. • 78
Plot of the Reaction Rate Generated by the Analogue According to the Arrhenius
Equ~tion (n=10)
n •• •• •··· · · ··· .... . ... ..
79Plot of the Reaction Rate Generated by the Analogue According to the Arrhenius
Equation (n=12) •o••••• •••••••••••••••••• 80
Plot of the Reaction Rate Generated by the Analogue According to the Arrhenius
Equation (n=16) ~oonc~• •••••• •• •••n•• • • • • 81
Figure VIII.9
Figure VIII e 10
Figure VIII .11
Figure VIII.12
Figure VIII.13
Figure VIII .14
Figure A~1
Figure A.2
Relationship between Temperature Coefficient of Generated Reaction
Page
Rate and Integer Multiple n •••• ••• ••• ••• 82
Measured Output Voltage Changes of Integrator at Various Input
Voltages • • • • o • • t ie••oo • ., o• •• • • • • • • • o• • • • • 83
Reaction Rate and Time Profile in the Vicinity of the Sensor of the
Analogue in a Thermal Sterilization 84
Progress of the Thermal Steril ization Detected by the Analogue and th~t by
Temperature and Time Measurement •••••••• 85
Reaction Rnte and Time Profile in the Vicinity of the Sensor of the Analogue in a Thermal Destruction of a Chemical
Species f'l oo• • • • t> • oo • .. • • • • • o • • • • • o , , • o • o•• • 86
Progr ess of the Thermal Destruction of the Chemical Species Detected by the Analogue and that by Temperature
and Time Measurement '· •••••
o. . . . . .. ... . ..
87Characteristics of Copper-constantan
Thermocouple • • • • • • • • • • •••• •••• o•• • • • • • • 93
Relationship of Inverse Absolute Temperature at Hot Junction and El ectrical Potential of the Copper-
constantan Thermocoupl e o e o • $ • • • • • • • • o • • 94
I. SUMMARY
The objective of this study was to investigate some general principles in thermal processing and some methods for following this processing experimentally. The emphasis of the investigat- ion was to develop a simple electrical analogue system for
followinB the progress of a single stage irreversible thermal processing reaction.
Documented data and principles of the kinetics of thermal processing of biological material showed that such process reaction could be approximated by the kinetic model of a single stage irreversible reaction. Temperature dependency of the thermal processing rate could also be approxim~ted by the Arrhenius equation.
Functional principles of electrical analogue computers were applied to develop the electrical analogue system. The
structure and mode of operation of this system is described.
The relationship between the output voltage of the analogue system and the progress of the thermal processing are derived for different known thermal processing reactions, following the kinetic model of a single stage irreversible reaction.
The performance of the electrical analogue system in this study was tested. The results indicated that the electrical analogue system so constructed could approximate the function described in theory. Non-ideality of the electrical circuitory, however, restricted the application of the electrical analogue system for its qualitative value only. The parameter governing
the temperature dependence of an irreversible reaction rate could be generated with error of approximat ely ~
4.55% .
The errorassociated with application of the ~nalogue integrator for
integrating the generated reaction rate w&s approximately ~
7 . 25 % .
The overall error in application of the analogue system for
detecting thermal processing varied with the time span of process- ing cycle1 and processing effect achieved at temperatures other than the set temperature of processing.