A Hadamard-Jensen Inequality and an Application to the Elastic Torsion Problem
This is the Published version of the following publication
Dragomir, Sever S and Keady, Grant (1998) A Hadamard-Jensen Inequality and an Application to the Elastic Torsion Problem. RGMIA research report collection, 1 (2).
The publisher’s official version can be found at
Note that access to this version may require subscription.
Downloaded from VU Research Repository https://vuir.vu.edu.au/17122/
! "
#
$%&
¾
&
%&
¾
Ê
ª
"
ª
Ê
ª
Ê
ª
"
ª
&
$
%&%$
'
! "#$#%#
&#' (# )$#(# *+ ,+-
!& ".
& ! "
!//"
'& (#+( 0##
* + .
# & (#+ .
%
+#)(
+1/2+# #
) '
'('' #3*(4
+ # 0++
& &
!& "
#()*( ($+,*
!" & !& " 1,"
!"
! !&
"
1," 1," !&,
"./!&
"
05#* '+,/#'
' +
/
!!/"
"
6
"
/
!
"
"
/
!
"
!"
)
!" . !
" /
!" #
#3 * (7 + %+
* 8
!/"8 (
040##* % #$#
'+ + 1/,2 # (
''#
&
" 97& # & $
&
! ".
9!" &9! "
! ".
9!"
9!"
& & !
,
!
"
!/:"
! "
! "
!/;"
& % .9
,!&/
"/
& 9#3(&-
9!"9!"! 9"!" &
!/<"
. #
' .
# '''
!
" .
9!" &9!
"
9!
"
. 9!
"
!
" .,
(* !/:"
= ( & > * !/<" ##
9! "9!"! 9"!" &
''* &'
! " . &9! "
9!"
9!"
9!" .
! "
'* !/;"
&
)'% 0+
( # ( #3*
' ;
# #$#
% & $ +/ +#$
. ,
"
.
?&
#
## /: $
.%
!
".
# (+ ( :/+ ,
#/ )
/
&
/
&
!/"
/
!:/"
* 05#@* +# ##(
8 + ( 8
!
' '!,"./" *
/
&
&'
/
&
/
!/"
!::"
//!"
,# / + # . , (# &+
#''
.
#
6
.
!:;"
/
"
/
6/
/
&
!
"
!:<"
/
!6/"
/
/
/
/
!6/"
'
! "
!".!6/"
A
!:B"
!/".
&
"
!"
"
!".!6/"
!:C"
& '4#$*!:<4" '
'0##@* !/:"' /:
9.
4#!:<4"
(
D@(&#'
%* ((
*!:<"
* !:C" *!:/"+ . + # 4#
!:<4"
0 4#* !:<4" )
' * !/;" &7
6 &
! "
% !:;"+. '
& ! "
!6/"
* ( .
'4#* !:<4"
#
E('% * !:C"
&
.
.
!/ "
&
,
&
.
!"
!".
F!66/"
F!6/"F!6/"
!:G"
& H' #+$#
/
.
"
!/"
"
.
F!6/"F!6/"
F!66/"
1//+:2#$# ?
' ##(- % 4
+ # ?
&+ ?
# # &
! ? #(-( ('
>- I "
#'
/ ,
"
!".
&
!"
!:J"
& '
+
., $+
&+
!
".
!/"
"
#
%+# ?
.
.
!/" ' &7
&
!"
!/" .
&
K
D@+#'(##'
) . /# /* !:J" * !:C"7
./ * K (+
!:" .!6/"!6:":+ '4 % * '
(
/LB/(- 1//2+ #(*+IM # ?'5#
(#'D @#D'@
' # ! . :" & !
& ' "+ &+ #
+
(
#+ #
#3*( K%#+ +
N (+ ( (
'+.:7 1//2
#&+($#' + #3(
&#& '+'
+
O . &
. , (# &
#! P"( '
-' ./
%
+
+ #
+ !
" .
.%
'$ # '
.
.
. /
##
. !
"+ #
#+
1//2 # ( #
Q - &
+
&
(
8 . : 8 #
((-(-+##'4
%# ' '
(##+ 4#(
$#(#
#$(#
(#
!&"
& #
#(## %#
K ( %#+
.:+1B2
& !
K .:#-4=+1G2 '
#$# 1C2
! ( 1/:2"
& !
6:
:
&'
,
!;/"
;
:
&
.
!/"
!;:"
& $ *
+
.
6
0./ '( I #( (1/:2
+%&+
:
!;;"
$#3* !*.:"+
O
6
. !", .: /
:
# !:".
!:
" Æ#3* (
' .,+#
%( %
.,(# & 'GC1/:2
&+
.!/"
& ) & %+ ,+ #
0%(%
( # & # ' GC4GG 1/:2
* !;;" (# ! $ (#+ . :+ (
I "
#' !# !
""
. /
&'
'* !;;"+
:
+#''* !;/"
./
;
.
:
&
* !;:"
! &
;
:!6/"
/
!6/"
&
&
!;<"
!:"
&
&
!:"
!;B"
%
"
/:
;
:!6/"
/
!6/"
&
&
!;C"
! "
&
&
!"
!;G"
& * !;<" # !;B" ' ;/ # *4
!;C"#!;G"
'4 * !;G" !:C" K *4
!::".# 0##* !:<"
/
&
&'
/
&
&'
/
&
&
/"
&
H' '* !;G" $+
4+
* #* !;G"
K;:#*!:B"!
"
+/:"+
;
:
&
#
!6/"
#*!;C"
!"# # !
./
./7 &
.
%
.: $ "
%-''*+#'
N ' 4
! % (
# & #(+ #
# 1B+//2"
E#' *# # (
(#*' $#'
&
6
/ 6
% ,
;
%
!"
,
(
%
6
%
!
%
"
;
.
(
,
%
"
,
&
&
6
%
&
#$# 1B2 K ( # *
'+
# #
K+ K*'+ !#+
+
:" K+&
+
&
.:
)% '#' $+
&
;
:
#%#
&
.
"
*'+#
&
(
%
'
)# # N + '
4'+ %
H' 4- * . : (+
*!;B" (# ' !::" . C( < = #
#& $*+#1//2+
/
J
&
* (* &#- #+#
1/:2
/
:
%&
* (* & E('
*'
&
<
# ! 1/2 (# (
(# &
#&
"
#*'
4
# # %#&
1/2'#*O .
+ , /+ ' & ! . , (" '
0##* +
(+1C+<+:2
&'
1/:2#
''# ;
# ( +##
1/2 (# # ## 7 %
+ 1;2+ # # %
'(#+##$#
( ! - ''
+ ' # ' %
%++ + % "
'-#' #
H ) ## #'
' /LLB+ /LLC#(/LLJ
1/2 '# # + R0##@*
%'#+#4
(S+( ) * + , ,
T/LLC# +/LLJ
1:2 > + , - " &$.+ =
%&+! '4P'+>7 /LJC"
1;2 # + R % S+ / *
+"'(!/LJB"+<JG4B,: