• Tidak ada hasil yang ditemukan

A Hadamard-Jensen Inequality and an Application to the Elastic Torsion Problem

N/A
N/A
Protected

Academic year: 2024

Membagikan "A Hadamard-Jensen Inequality and an Application to the Elastic Torsion Problem"

Copied!
11
0
0

Teks penuh

(1)

A Hadamard-Jensen Inequality and an Application to the Elastic Torsion Problem

This is the Published version of the following publication

Dragomir, Sever S and Keady, Grant (1998) A Hadamard-Jensen Inequality and an Application to the Elastic Torsion Problem. RGMIA research report collection, 1 (2).

The publisher’s official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17122/

(2)

! "

#

$%&

¾

&

%&

¾

Ê

ª

"

ª

Ê

ª

Ê

ª

"

ª

&

$

%&%$

'

! "#$#%#

&#' (# )$#(# *+ ,+-

!& ".

& ! "

!//"

'& (#+( 0##

* + .

# & (#+ .

%

+#)(

+1/2+# #

) '

'('' #3*(4

+ # 0++

& &

!& "

#()*( ($+,*

(3)

!" & !& " 1,"

!"

! !&

"

1," 1," !&,

"./!&

"

05#* '+,/#'

' +

/

!!/"

"

6

"

/

!

"

"

/

!

"

!"

)

!" . !

" /

!" #

#3 * (7 + %+

* 8

!/"8 (

040##* % #$#

'+ + 1/,2 # (

''#

&

" 97& # & $

&

! ".

9!" &9! "

! ".

9!"

9!"

& & !

,

!

"

!/:"

! "

! "

!/;"

& % .9

,!&/

"/

& 9#3(&-

9!"9!"! 9"!" &

!/<"

. #

' .

# '''

!

" .

9!" &9!

"

9!

"

. 9!

"

!

" .,

(4)

(* !/:"

= ( & > * !/<" ##

9! "9!"! 9"!" &

''* &'

! " . &9! "

9!"

9!"

9!" .

! "

'* !/;"

&

)'% 0+

( # ( #3*

' ;

# #$#

% & $ +/ +#$

. ,

"

.

?&

#

## /: $

.%

!

".

# (+ ( :/+ ,

#/ )

/

&

/

&

!/"

/

!:/"

* 05#@* +# ##(

8 + ( 8

!

' '!,"./" *

/

&

&'

/

&

/

!/"

!::"

//!"

,# / + # . , (# &+

#''

.

#

6

.

!:;"

(5)

/

"

/

6/

/

&

!

"

!:<"

/

!6/"

/

/

/

/

!6/"

'

! "

!".!6/"

A

!:B"

!/".

&

"

!"

"

!".!6/"

!:C"

& '4#$*!:<4" '

'0##@* !/:"' /:

9.

4#!:<4"

(

D@(&#'

%* ((

*!:<"

* !:C" *!:/"+ . + # 4#

!:<4"

0 4#* !:<4" )

' * !/;" &7

6 &

! "

% !:;"+. '

& ! "

!6/"

* ( .

'4#* !:<4"

#

E('% * !:C"

&

.

.

!/ "

&

,

&

.

!"

!".

F!66/"

F!6/"F!6/"

!:G"

(6)

& H' #+$#

/

.

"

!/"

"

.

F!6/"F!6/"

F!66/"

1//+:2#$# ?

' ##(- % 4

+ # ?

&+ ?

# # &

! ? #(-( ('

>- I "

#'

/ ,

"

!".

&

!"

!:J"

& '

+

., $+

&+

!

".

!/"

"

#

%+# ?

.

.

!/" ' &7

&

!"

!/" .

&

K

D@+#'(##'

) . /# /* !:J" * !:C"7

./ * K (+

!:" .!6/"!6:":+ '4 % * '

(

(7)

/LB/(- 1//2+ #(*+IM # ?'5#

(#'D @#D'@

' # ! . :" & !

& ' "+ &+ #

+

(

#+ #

#3*( K%#+ +

N (+ ( (

'+.:7 1//2

#&+($#' + #3(

&#& '+'

+

O . &

. , (# &

#! P"( '

-' ./

%

+

+ #

+ !

" .

.%

'$ # '

.

.

. /

##

. !

"+ #

#+

1//2 # ( #

Q - &

+

&

(

8 . : 8 #

((-(-+##'4

%# ' '

(##+ 4#(

$#(#

#$(#

(#

!&"

& #

#(## %#

K ( %#+

.:+1B2

& !

(8)

K .:#-4=+1G2 '

#$# 1C2

! ( 1/:2"

& !

6:

:

&'

,

!;/"

;

:

&

.

!/"

!;:"

& $ *

+

.

6

0./ '( I #( (1/:2

+%&+

:

!;;"

$#3* !*.:"+

O

6

. !", .: /

:

# !:".

!:

" Æ#3* (

' .,+#

%( %

.,(# & 'GC1/:2

&+

.!/"

& ) & %+ ,+ #

0%(%

( # & # ' GC4GG 1/:2

* !;;" (# ! $ (#+ . :+ (

I "

#' !# !

""

. /

&'

'* !;;"+

:

+#''* !;/"

./

;

.

:

&

* !;:"

(9)

! &

;

:!6/"

/

!6/"

&

&

!;<"

!:"

&

&

!:"

!;B"

%

"

/:

;

:!6/"

/

!6/"

&

&

!;C"

! "

&

&

!"

!;G"

& * !;<" # !;B" ' ;/ # *4

!;C"#!;G"

'4 * !;G" !:C" K *4

!::".# 0##* !:<"

/

&

&'

/

&

&'

/

&

&

/"

&

H' '* !;G" $+

4+

* #* !;G"

K;:#*!:B"!

"

+/:"+

;

:

&

#

!6/"

#*!;C"

!"# # !

./

./7 &

.

%

(10)

.: $ "

%-''*+#'

N ' 4

! % (

# & #(+ #

# 1B+//2"

E#' *# # (

(#*' $#'

&

6

/ 6

% ,

;

%

!"

,

(

%

6

%

!

%

"

;

.

(

,

%

"

,

&

&

6

%

&

#$# 1B2 K ( # *

'+

# #

K+ K*'+ !#+

+

:" K+&

+

&

.:

)% '#' $+

&

;

:

#%#

&

.

"

*'+#

&

(

%

'

)# # N + '

4'+ %

H' 4- * . : (+

*!;B" (# ' !::" . C( < = #

#& $*+#1//2+

/

J

&

* (* &#- #+#

1/:2

/

:

%&

(11)

* (* & E('

*'

&

<

# ! 1/2 (# (

(# &

#&

"

#*'

4

# # %#&

1/2'#*O .

+ , /+ ' & ! . , (" '

0##* +

(+1C+<+:2

&'

1/:2#

''# ;

# ( +##

1/2 (# # ## 7 %

+ 1;2+ # # %

'(#+##$#

( ! - ''

+ ' # ' %

%++ + % "

'-#' #

H ) ## #'

' /LLB+ /LLC#(/LLJ

1/2 '# # + R0##@*

%'#+#4

(S+( ) * + , ,

T/LLC# +/LLJ

1:2 > + , - " &$.+ =

%&+! '4P'+>7 /LJC"

1;2 # + R % S+ / *

+"'(!/LJB"+<JG4B,:

Referensi

Dokumen terkait

The Best Bounds in Wallis' Inequality This is the Published version of the following publication Chen, Chao-Ping and Qi, Feng 2002 The Best Bounds in Wallis' Inequality.. The

Geometric Means, Index Mappings and Entropy This is the Published version of the following publication Comanescu, D, Dragomir, Sever S and Pearce, Charles 2002 Geometric Means, Index

Integral Inequalities of Grüss Type via Pólya-Szegö and Shisha-Mond Results This is the Published version of the following publication Dragomir, Sever S and Diamond, N.. T 2002

restriction on functional capacities and body composition in obese adults during weight loss: A systematic review This is the Published version of the following publication Miller,

Two Discrete Inequalities of Grüss Type Via Pólya- Szegö and Shisha Results for Real Numbers This is the Published version of the following publication Dragomir, Sever S and Khan,

the Swedish Chiropractic Association This is the Published version of the following publication Leach, Matthew J, Palmgren, Per J, Thomson, Oliver P, Fryer, Gary, Eklund, Andreas,

A new generalization of the trapezoid formula for N- time differentiable mappings and applications This is the Published version of the following publication Cerone, P, Dragomir,

A New Generalization of the Trapezoid Formula for n- Time Differentiable Mappings and Applications This is the Published version of the following publication Cerone, Pietro, Dragomir,