http://researchspace.auckland.ac.nz ResearchSpace@Auckland
Copyright Statement
The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).
This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:
• Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
• Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
• You will obtain the author's permission before publishing any material from their thesis.
To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback
General copyright and disclaimer
In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
ABSTRACT
The Resonant Bar method f o r measuring i n t e r n a l f r i c t i o n i n s o l i d s h a s been i n v e s t i g a t e d with t h e aim of extending t h i s method t o h i g h e r frequencies i n t h e range 100 kHz t o 1 MHz. This n e c e s s i t a t e d a s t u d y o f t h e v e l o c i t y d i s p e r s i o n of t h e fundamental l o n g i t u d i n a l
mode i n rods of a p p r o p r i a t e s i z e i n t h e region where t h e wavelength is o f t h e same o r d e r of magnitude a s t h e diameter.
I t is shown t h a t t h e v e l o c i t y d i s p e r s i o n o f t h e fundamental l o n g i t u d i n a l mode i n a c y l i n d r i c a l rod obeys t h e e x a c t s o l u t i o n of t h e Pochhamrner
-
Chree equation c a l c u l a t e d by Bancroft and B r a d f i e l d , over t h e range of diameter t o wavelength r a t i o from z e r o t o 2.0.The v e l o c i t y d i s p e r s i o n o f t h e lowest l o n g i t u d i n a l mode of a rod o f square c m s s - s e c t i o n h a s proved t o be t h e same as t h a t o f a c y l i n d r i c a l r o d o f t h e same m a t e r i a l , provided t h e e q u i v a l e n t diameter of t h e square cross-sectioned r o d is taken t o be 1.155 times i t s t h i c k n e s s . The t h e o r y o f Nigro (1966, 1968) agreed o n l y p a r t i a l l y with t h e experimental v e l o c i t y d i s p e r s i o n o f a square rod (Booker 1969). A s a r e s u l t of t h i s and a r e c e n t t h e o r y by maser (19691, Nigm h a s modified h i s t h e o r v , s o t h a t a t p r e s e n t t h e r e i s p e r f e c t agreement between t h e o r y and experiment.
I n c y l i n d r i c a l r o d s many resonant responses a r e e x c i t e d t h a t are n o t due t o t h e fundamental mode ( a l s o c a l l e d t h e Young's modulus mode) when t h e diameter t o wavelenflh r a t i o becomes
a p p r e c i a b l e ( u s u a l l y about 0 . 7 ) . These resonances a r e a t t r i b u t e d t o h i g h e r o r d e r l o n g i t u d i n a l modes. I d e n t i f i c a t i o n of t h e Young's modulus mode resonances becomes impossible when many o f t h e s e h i g h e r o r d e r mode resonances occur.
On s e v e r a l occasions one of t h e e x ~ e c t e d Young's modulus mode resonances is a b s e n t , i t s p l a c e being taken by two o r more resonances extremely c l o s e t o g e t h e r i n frequency and of small v i b r a t i o n amplitude. Frequently some of t h e harmonics have a frequency above o r below t h e expected v a l u e , s o that t h e v do n o t l i e on a smooth graph of frequency v e r s u s h a m o n i c number.
It i s sho\m t h a t t h e above two phenomena occur when t h e
L I E
value of R (= -1 i s c l o s e t o one of t h e v a l u e s fl fl t o 12
t F' 1 2
'
o r R3 where, a t a value o f :
( 1 ) S l
=
QE, an end-resonance o c c u r s ;( 2 ) Sl =
nl,
t h e f i r s t complex mode becomes r e a l ;( 3 )
n
= Q,, t h e L ( O , Z ) mode c u t s t h e 9 a x i s on a n 9. v e r s u s k a graph;0
( 4 )
=
R t h e L(O , 3 1 mode c u t s t h e R a x i s . 3'
To extend t h e Sesonant Bar method t o f r e q u e n c i e s approaching 1 MHz, it has been found e s s e n t i a l t o use r o d s approximately 3? 1 i n c h e s long and t h of an inch i n diameter.
- 8
The design and c o n s t r u c t i o n o f a b a r support a b s t r a c t i n g a n e g l i g i b l e amount o f energy from such s l e n d e r r o d s proved almost impossible. Both a c e n t r a l t h r e e - p i n suppow and a c e n t r a l t h r e e - wire support have proved t o be u n s u i t a b l e . A support c o n s i s t i n g o f two p a r a l l e l h o r i z o n t a l t u n g s t e n wires of a q u a r t e r of a
thousandth of an inch diameter has however been found t o g i v e damping v a l u e s c o n s i s t e n t t o within 10%.
Graphs are drawn of damping v e r s u s frequency f o r s e v e r a l aluminium and fused s i l i c a r o d s , show in^ t h a t ( 7 ' v a r i e s hut little with frequency and t h a t on t h e whole it v a r i e s smoothly from one harmonic t o t h e n e x t .
The Resonant Bar method is i d e a l l y s u i t e d f o r t h e determination of dynamic e l a s t i c moduli. A computer Dragram has been developed and used t o c a l c u l a t e Young's modulus and P o i s s o n ' s r a t i o f o r any given rod Erom t h e resonance f r e q u e n c i e s of l o n g i t u d i n a l v i b r a t i o n , the dimensions and t h e mass.