• Tidak ada hasil yang ditemukan

ON ACZÉL'S INEQUALITY FOR REAL NUMBERS

N/A
N/A
Protected

Academic year: 2024

Membagikan "ON ACZÉL'S INEQUALITY FOR REAL NUMBERS"

Copied!
8
0
0

Teks penuh

(1)

On Aczél's Inequality for Real Numbers

This is the Published version of the following publication

Dragomir, Sever S and Cho, Yeol Je (2000) On Aczél's Inequality for Real Numbers. RGMIA research report collection, 3 (1).

The publisher’s official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17283/

(2)

S. S. Dragomir and Y. J. Cho

Abstract. In this note, we point out some new inequalities of Aczel’s type for real numbers.

I. Introduction

In 1956, J. Acz´el has proved the following interesting inequality ([2, p.

57], [3, p. 117 ]):

Theorem A. Let a = (a1, a2,· · · , an) and b = (b1, b2,· · · , bn) be two se- quences of real numbers such that

0< a21−a22− · · · −a2n or 0< b21−b22− · · · −b2n. Then

(1.1) (a21−a22− · · · −a2n)(b21−b22− · · · −b2n)

(a1b1−a2b2 − · · · −anbn)2,

with the equality if and only if the sequences a and b are proportional.

For various generalizations of Theorem A, see the recent book ([3, p. 117]) where further references are given.

Now, in this note, we give another proof than that embodied in [2, p. 57]

for a weighted variant of (1.1).

Assume that

Xn

i=1

pia2i ≤a2 and Xn

i=1

pib2i ≤b2,

(1991) AMS Subject Classification: 28D15 Key Words and Phrases: Acz´el’s inequality.

Typeset byAMS-TEX 1

(3)

2 S. S. DRAGOMIR AND Y. J. CHO

where ai, bi, a, b R and 0 pi for i = 1,2,· · · , n. Then we have the following inequality:

(1.2) 

a2 Xn

i=1

pia2i‘

b2 Xn

i=1

pib2i‘

 ab−

Xn

i=1

piaibi‘2

.

Indeed, by a simple calculation, we have

(a2−c2)(b2−d2)(|ab| − |cd|)2 for all a, b, c, d∈R. Thus we have

(1.3)

a2 Xn

i=1

pia2i‘

b2 Xn

i=1

pib2i‘



|ab| −Xn

i=1

pia2i‘1/2Xn

i=1

pib2i‘1/2‘2

.

By Cauchy-Buniakowski-Schwarz’s inequality, we have

ŒŒ

Œ Xn

i=1

piaibiŒŒŒXn

i=1

pia2i‘1/2Xn

i=1

pib2i‘1/2

and so

0≤ |ab| −Xn

i=1

pia2i‘1/2Xn

i=1

pib2i‘1/2

≤ |ab| −ŒŒŒ Xn

i=1

piaibi

ŒŒ

Œ

=ŒŒŒ|ab| −ŒŒŒ Xn

i=1

piaibiŒŒŒŒŒŒ

ŒŒŒab− Xn

i=1

piaibiŒŒŒ.

Thus, we have

(1.4) 

|ab| −Xn

i=1

pia2i‘1/2Xn

i=1

pib2i‘1/2‘2

 ab−

Xn

i=1

piaibi‘2

.

(4)

Therefore, from (1.3) and (1.4), we have the inequality (1.2). This completes the proof.

II. The Results

We will start with the following theorem which give a refinement of the following variant of Acz´el’s inequality:

(2.1)  a2

Xn

i=1

pia2i‘1/2 b2

Xn

i=1

pib2i‘1/2

ŒŒŒab− Xn

i=1

piaibiŒŒŒ, assuming that

Xn

i=1

pia2i ≤a2 and Xn

i=1

pib2i ≤b2

and ai, bi, a, b∈R, 0≤pi for i= 1,2,· · · , n.

Theorem 2.1. Assume that ai, bi, pi, a, b are as above and0≤qi ≤pi for all i= 1,2,· · · , n. Then we have the following inequality:

(2.2)

0 Xn

i=1

qi|aibi| −ŒŒŒ Xn

i=1

qiaibi

ŒŒ

Œ

hXn

i=1

qia2i Xn

i=1

qib2ii1/2

ŒŒŒ Xn

i=1

qiaibiŒŒŒ

ŒŒŒab− Xn

i=1

piaibiŒŒŒ a2

Xn

i=1

pia2i‘1/2 b2

Xn

i=1

pib2i‘1/2

.

Proof. From a2Pn

i=1pia2i 0 andb2Pn

i=1pia2i 0, it follows that a2

Xn

i=1

(pi−qi)a2i ≥a2 Xn

i=1

pia2i 0,

b2 Xn

i=1

(pi−qi)b2i ≥b2 Xn

i=1

pib2i 0.

Now, for ti =pi−qi 0, by (1.2), we have

a2 Xn

i=1

tia2i‘

b2 Xn

i=1

tib2i‘

 ab−

Xn

i=1

tiaibi‘2

,

(5)

4 S. S. DRAGOMIR AND Y. J. CHO

i.e.,

a2 Xn

i=1

pia2i‘ +

Xn

i=1

qia2iih

b2 Xn

i=1

pib2i‘ +

Xn

i=1

qib2ii

ab− Xn

i=1

piaibi‘ +

Xn

i=1

qiaibii2

.

Applying the well-known Cauchy-Buniakowski-Schwarz’s inequality for real number, we have

(2.4) hXn

i=1

qia2i)1/2Xn

i=1

qib2i‘1/2

a2

Xn

i=1

pia2i‘1/2 b2

Xn

i=1

pib2i‘1/2i2

Xn

i=1

qia2i +h

a2 Xn

i=1

pia2i‘1/2i2‘Xn

i=1

qib2i +h

b2 Xn

i=1

pib2i‘1/2i2‘ and, by the triangle inequality,

(2.5)

ŒŒ

Œ ab−

Xn

i=1

piaibi

‘+ Xn

i=1

qiaibi

ŒŒ

Œ

ŒŒŒab− Xn

i=1

piaibiŒŒŒ+ŒŒŒ Xn

i=1

qiaibiŒŒŒ. Thus, from (2.3), (2.4) and (2.5), it follows that

Xn

i=1

qia2i‘1/2Xn

i=1

qib2i‘1/2

a2

Xn

i=1

pia2i‘1/2 b2

Xn

i=1

pib2i‘1/2

ŒŒŒab− Xn

i=1

piaibi

ŒŒ

Œ+ŒŒŒ Xn

i=1

qiaibi

ŒŒ

Œ,

which implies that 0

Xn

i=1

qi|aibi| −ŒŒŒ Xn

i=1

qiaibiŒŒŒ

Xn

i=1

qia2i‘1/2Xn

i=1

qib2i‘1/2

ŒŒŒ Xn

i=1

qiaibiŒŒŒ

ŒŒŒab− Xn

i=1

piaibiŒŒŒ a2

Xn

i=1

pia2i‘1/2 b2

Xn

i=1

pib2i‘1/2

. This completes the proof.

(6)

Corollary 2.2. With the above assumptions for ai, bi, a, b∈R and 0≤pi

for i= 1,2,· · · , n, we have the following inequality:

0 Xn

i=1

pi|aibi| −ŒŒŒ Xn

i=1

piaibiŒŒŒ

hXn

i=1

pia2i Xn

i=1

pib2ii1/2

ŒŒŒ Xn

i=1

piaibi

ŒŒ

Œ

ŒŒŒab− Xn

i=1

piaibiŒŒŒ a2

Xn

i=1

pia2i‘1/2 b2

Xn

i=1

pib2i)1/2.

Another result of Acz´el’s type is as follows:

Theorem 2.3. Assume that a, b, ai, bi R and 0 pi for i = 1,2,· · · , n are such that

Xn

i=1

pia2i ≤a2 and Xn

i=1

pib2i ≤b2.

Then we have the following inequality:

h|a| −Xn

i=1

pia2i‘1/2i1/2h

|b| −Xn

i=1

pib2i‘1/2i1/2

≤ |ab|1/2ŒŒŒ Xn

i=1

piaibiŒŒŒ1/2.

Proof. We will start with the following elementary inequality:

(2.7) p

(x−y)(z−u)≤√

xz−√yu,

where x y 0 and z u 0. Indeed, the inequality (2.7) is equivalent with

(x−y)(z−u)(

xz−√yu)2 =xz−2√xzyu+yu, i.e.,

xz+yu−yz−xu≤xz−2√xzyu+yu, which is equivalent with

2√xzyu≤yz+xu

(7)

6 S. S. DRAGOMIR AND Y. J. CHO

for x, y, z, u≥0, which is obvious.

Now, putting

x=|a|, y=Xn

i=1

pia2i‘1/2

, z =|b|, u=Xn

i=1

pib2i)1/2,

then, by the inequality (2.7), we have

(2.8)

h|a| −Xn

i=1

pia2i‘1/2i1/2h

|b| −Xn

i=1

pib2i‘1/2i1/2

≤ |ab|1/2Xn

i=1

pia2i‘1/4Xn

i=1

pib2i‘1/4

.

By Cauchy-Buniakowski-Schwarz’s inequality, we have

ŒŒ

Œ Xn

i=1

piaibiŒŒŒ1/2 hXn

i=1

pia2i Xn

i=1

pib2ii1/4

and so, by (2.8), we have the desired inequality (2.6). This completes the proof.

Corollary 2.4. Let a, b, ai, bi ∈R for i= 1,2,· · · , n be such that Xn

i=1

a2i ≤a2 and Xn

i=1

b2i ≤b2.

Then we have the following inequality:

h|a| −Xn

i=1

a2i‘1/2i1/2h

|b| −Xn

i=1

b2i‘1/2i1/2

≤ |ab|1/2ŒŒŒ Xn

i=1

aibiŒŒŒ1/2.

Remark. The inequality (2.9) was proved in [1] as a particular case of an inequality holding in inner product spaces.

(8)

References

1. S. S. Dragomir,A generalization of J. Acz´el’s inequality in inner product spaces, Acta Math. Hungarica 65(2)(1994), 141–148.

2. D. S. Mitrinovi´c,Analytic Inequalities, Springer-Verlag, 1970.

3. D. S. Mitrinovi´c, J. E. Peˇcari´c and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Acad. Publ., 1993.

Department of Mathematics, Victoria University of Technology, Mel- bourne, Victoria 8001, Australia

Department of Mathematics, Gyeongsang National University, Chinju 660- 701, Korea

Referensi

Dokumen terkait

Applications of Ostrowski's Version of the Grüss Inequality for Trapezoid Type Rules This is the Published version of the following publication Barnett, Neil S and Dragomir, Sever S

Grüss Inequality in Inner Product Spaces This is the Published version of the following publication Dragomir, Sever S 1998 Grüss Inequality in Inner Product Spaces.. The publisher’s

Refinements of Fejér's Inequality for Convex Functions This is the Published version of the following publication Tseng, Kuei-Lin, Hwang, Shiow-Ru and Dragomir, Sever S 2009

Interpolations of Jensen's Integral Inequality This is the Published version of the following publication Dragomir, Sever S, Pearce, Charles and Pecaric, Josep 2001 Interpolations of

An Ostrowski Type Inequality for Mappings Whose Second Derivatives are Bounded and Applications This is the Published version of the following publication Dragomir, Sever S and

A General Ostrowski Type Inequality for Double Integrals This is the Published version of the following publication Hanna, George T, Dragomir, Sever S and Cerone, Pietro 2000 A

Some Estimations of Kraft Numbers and Related Results This is the Published version of the following publication Dragomir, Nicoleta, Dragomir, Sever S and Pranesh, Kumar 1998 Some

Some Companions of Fejér's Inequality for Convex Functions This is the Published version of the following publication Tseng, Kuei-Lin, Hwang, Shiow-Ru and Dragomir, Sever S 2009 Some