Some Companions of Fejér's Inequality for Convex Functions
This is the Published version of the following publication
Tseng, Kuei-Lin, Hwang, Shiow-Ru and Dragomir, Sever S (2009) Some Companions of Fejér's Inequality for Convex Functions. Research report collection, 12 (Supp).
The publisher’s official version can be found at
Note that access to this version may require subscription.
Downloaded from VU Research Repository https://vuir.vu.edu.au/17955/
SOME COMPANIONS OF FEJ ´ER’S INEQUALITY FOR CONVEX FUNCTIONS
K.-L. TSENG, SHIOW-RU HWANG, AND S.S. DRAGOMIR
Abstract. In this paper, we establish some companions of Fej´er’s inequality for convex functions which generalize the inequalities of Hermite-Hadamard type from [2] and [7].
1. Introduction
In what follows we assume that the functionf : [a, b]→Ris convex,g: [a, b]→ [0,∞) is integrable and symmetric to a+b2 and we define the following associated functions on [0,1] by:
G(t) = 1 2
f
ta+ (1−t)a+b 2
+f
tb+ (1−t)a+b 2
; H(t) = 1
b−a Z b
a
f
tx+ (1−t)a+b 2
dx;
I(t) = Z b
a
1 2
f
tx+a
2 + (1−t)a+b 2
+f
tx+b
2 + (1−t)a+b 2
g(x)dx;
L(t) = 1 2 (b−a)
Z b
a
[f(ta+ (1−t)x) +f(tb+ (1−t)x)]dx;
and
Sg(t) =1 4
Z b
a
f
ta+ (1−t)x+a 2
+f
ta+ (1−t)x+b 2
+f
tb+ (1−t)x+a 2
+f
tb+ (1−t)x+b 2
g(x)dx.
Iff is defined as above, then
(1.1) f
a+b 2
≤ 1 b−a
Z b
a
f(x)dx≤ f(a) +f(b) 2 is known as the Hermite-Hadamard inequality [1].
For some results which generalize, improve, and extend this famous integral inequality see [2] – [16].
1991Mathematics Subject Classification. 26D15.
Key words and phrases. Hermite-Hadamard inequality, Fej´er inequality, Convex function.
This research was partially supported by grant NSC 98-2115-M-156-004.
1
In [2], Dragomir established the following theorem which refines the first inequal- ity of (1.1).
Theorem A. Letf, H be defined as above. ThenH is convex, increasing on[0,1], and for allt∈[0,1], we have
(1.2) f
a+b 2
=H(0)≤H(t)≤H(1) = 1 b−a
Z b
a
f(x)dx.
In [7], Dragomir, Miloˇsevi´c and S´andor established inequalities related to (1.1).
They are incorporated in the following:
Theorem B. Let f,H be defined as above. Then:
(1) The following inequality holds f
a+b 2
≤ 2 b−a
Z a+3b4
3a+b 4
f(x)dx≤ Z 1
0
H(t)dt
≤ 1 2
"
f a+b
2
+ 1
b−a Z b
a
f(x)dx
# . (1.3)
(2) Iff is differentiable on[a, b],then, for allt∈[0,1], we have the inequalities 0≤ 1
b−a Z b
a
f(x)dx−H(t)
≤(1−t)
"
f(a) +f(b)
2 − 1
b−a Z b
a
f(x)dx
# (1.4)
and
(1.5) 0≤f(a) +f(b)
2 −H(t)≤ (f0(b)−f0(a)) (b−a)
4 .
Theorem C. Letf, H, Gbe defined as above. Then:
(1) Gis convex and increasing on[0,1].
(2) We have
inf
t∈[0,1]G(t) =G(0) =f a+b
2
and
sup
t∈[0,1]
G(t) =G(1) =f(a) +f(b)
2 .
(3) The following inequality holds for allt∈[0,1]:
(1.6) H(t)≤G(t).
(4) The following inequality holds:
2 b−a
Z a+3b4
3a+b 4
f(x)dx≤ 1 2
f
3a+b 4
+f
a+ 3b 4
≤ Z 1
0
G(t)dt
≤ 1 2
f
a+b 2
+f(a) +f(b) 2
. (1.7)
(5) Iff is differentiable on[a, b],then, for allt∈[0,1],we have the inequality
(1.8) 0≤H(t)−f
a+b 2
≤G(t)−H(t). Theorem D. Let f, H, G, Lbe defined as above. Then:
(1) Lis convex on [0,1].
(2) We have the inequality:
(1.9) G(t)≤L(t)≤ 1−t b−a
Z b
a
f(x)dx+t·f(a) +f(b)
2 ≤ f(a) +f(b) 2 for allt∈[0,1]and
sup
t∈[0,1]
L(t) =f(a) +f(b)
2 .
(3) For allt∈[0,1], we have the inequalities:
H(1−t)≤L(t) and H(t) +H(1−t)
2 ≤L(t).
In [8], Fej´er established the following weighted generalization of the Hermite- Hadamard inequality (1.1).
Theorem E. Letf, g be defined as above. Then we have (1.10) f
a+b 2
Z b
a
g(x)dx≤ Z b
a
f(x)g(x)dx≤ f(a) +f(b) 2
Z b
a
g(x)dx, which is known as Fej´er’s inequality.
In [11], Tseng, Hwang and Dragomir established the following theorems related to Fej´er-type inequalities.
Theorem F. Let f, g, Ibe defined as above. ThenI is convex, increasing on[0,1], and for allt∈[0,1], we have the following Fej´er-type inequality
f a+b
2 Z b
a
g(x)dx=I(0)≤I(t)≤I(1)
= Z b
a
1 2
f
x+a 2
+f
x+b 2
g(x)dx.
(1.11)
Theorem G. Let f, gbe defined as above. Then we have f
a+b 2
Z b
a
g(x)dx≤ f 3a+b4
+f a+3b4 2
Z b
a
g(x)dx
≤ Z b
a
1 2
f
x+a 2
+f
x+b 2
g(x)dx
≤ 1 2
f
a+b 2
+f(a) +f(b) 2
Z b
a
g(x)dx
≤ f(a) +f(b) 2
Z b
a
g(x)dx.
(1.12)
In this paper, we establish other Fej´er-type inequalities related to the functions G, H, I, L, Sg and therefore generalize Theorems B – D from above.
2. Main Results
In order to prove our main results, we need the following simple lemma:
Lemma 1 (see [10]). Let f be defined as above and leta≤A≤C ≤D ≤B ≤b withA+B=C+D. Then
f(C) +f(D)≤f(A) +f(B). Now, we are ready to state and prove our results.
Theorem 2. Let f, g, I be defined as above. Then:
(1) The following inequality holds:
f a+b
2 Z b
a
g(x)dx
≤2
"
Z a+b2
3a+b 4
f(x)g(4x−2a−b)dx+ Z a+3b4
a+b 2
f(x)g(4x−a−2b)dx
#
≤ Z 1
0
I(t)dt
≤ 1 2
"
f a+b
2 Z b
a
g(x)dx (2.1)
+ Z b
a
1 2
f
x+a 2
+f
x+b 2
g(x)dx
# .
(2) If f is differentiable on [a, b] and g is bounded on [a, b], then, for all t ∈ [0,1], we have the inequality
0≤ Z b
a
1 2
f
x+a 2
+f
x+b 2
g(x)dx−I(t)
≤(1−t)
"
f(a) +f(b)
2 (b−a)− Z b
a
f(x)dx
# kgk∞, (2.2)
wherekgk∞= sup
x∈[a,b]
|g(x)|.
(3) If f is differentiable on[a, b], then, for allt∈[0,1],we have the inequality 0≤f(a) +f(b)
2
Z b
a
g(x)dx−I(t)
≤(f0(b)−f0(a)) (b−a) 4
Z b
a
g(x)dx.
(2.3)
Proof. (1) Using simple techniques of integration, under the hypothesis of g, we have the following identities:
(2.4) f a+b
2 Z b
a
g(x)dx= 4 Z a+b2
a
Z 12
0
f a+b
2
g(2x−a)dtdx;
2
"
Z a+b2
3a+b 4
f(x)g(4x−2a−b)dx+ Z a+3b4
a+b 2
f(x)g(4x−a−2b)dx
#
= 2 Z a+b2
3a+b 4
[f(x) +f(a+b−x)]g(4x−2a−b)dx
= 2 Z a+b2
a
Z 12
0
f
x
2 +a+b 4
+f
3 (a+b)
4 −x
2
g(2x−a)dtdx;
(2.5)
Z 1
0
I(t)dt= Z b
a
Z 12
0
1 2
f
tx+a
2 + (1−t)a+b 2
+f
(1−t)x+a
2 +ta+b 2
g(x)dtdx +
Z b
a
Z 12
0
1 2
f
tx+b
2 + (1−t)a+b 2
+f
(1−t)x+b
2 +ta+b 2
g(x)dtdx
= Z b
a
Z 12
0
1 2
f
tx+a
2 + (1−t)a+b 2
+f
(1−t)x+a
2 +ta+b 2
g(x)dtdx +
Z b
a
Z 12
0
1 2
f
ta+ 2b−x
2 + (1−t)a+b 2
+f
(1−t)a+ 2b−x
2 +ta+b 2
g(x)dtdx
= Z a+b2
a
Z 12
0
f
ta+b
2 + (1−t)x (2.6)
+f
tx+ (1−t)a+b 2
g(2x−a)dtdx +
Z a+b2
a
Z 12
0
f
t(a+b−x) + (1−t)a+b 2
+f
ta+b
2 + (1−t) (a+b−x)
g(2x−a)dtdx;
1 2
"
f a+b
2 Z b
a
g(x)dx+ Z b
a
1 2
f
x+a 2
+f
x+b 2
g(x)dx
#
=1 2
Z b
a
Z 12
0
2f
a+b 2
+f
x+a 2
+f
a+ 2b−x 2
g(x)dtdx
= Z a+b2
a
Z 12
0
f(x) +f a+b
2
g(2x−a)dtdx (2.7)
+ Z a+b2
a
Z 12
0
f
a+b 2
+f(a+b−x)
g(2x−a)dtdx.
By Lemma 1, the following inequalities hold for allt∈ 0,12
andx∈ a,a+b2
.
(2.8) 4f
a+b 2
≤2
f x
2 +a+b 4
+f
3 (a+b)
4 −x
2
holds whenA= x2 +a+b4 , C=D= a+b2 andB =3(a+b)4 −x2 in Lemma 1.
(2.9) 2f x
2 +a+b 4
≤f
ta+b
2 + (1−t)x
+f
tx+ (1−t)a+b 2
holds whenA =ta+b2 + (1−t)x, C =D = x2 +a+b4 and B =tx+ (1−t)a+b2 in Lemma 1.
(2.10) 2f
3 (a+b)
4 −x
2
≤f
t(a+b−x) + (1−t)a+b 2
+f
ta+b
2 + (1−t) (a+b−x)
holds whenA=t(a+b−x) + (1−t)a+b2 , C =D= 3(a+b)4 −x2 andB =ta+b2 + (1−t) (a+b−x) in Lemma 1.
(2.11) f
ta+b
2 + (1−t)x
+f
tx+ (1−t)a+b 2
≤f(x) +f a+b
2
holds when A =x, C =ta+b2 + (1−t)x, D =tx+ (1−t)a+b2 and B = a+b2 in Lemma 1.
(2.12) f
t(a+b−x) + (1−t)a+b 2
+f
ta+b
2 + (1−t) (a+b−x)
≤f a+b
2
+f(a+b−x) holds for A= a+b2 , C =t(a+b−x) + (1−t)a+b2 , D=ta+b2 + (1−t) (a+b−x) and B = a+b−x in Lemma 1. Multiplying the inequalities (2.8)−(2.12) by g(2x−a) and integrating them over t on
0,12
, over x on a,a+b2
and using identities (2.4)−(2.7), we derive (2.1).
(2) On utilising the integration by parts, we have Z a+b2
a
a+b 2 −x
[f0(a+b−x)−f0(x)]dx
= Z b
a
x−a+b 2
f0(x)dx
= f(a) +f(b)
2 (b−a)− Z b
a
f(x)dx.
(2.13)
Using substitution rules for integration, under the hypothesis of g, we have the following identities
Z b
a
1 2
f
x+a 2
+f
x+b 2
g(x)dx
= Z b
a
1 2
f
x+a 2
+f
a+ 2b−x 2
g(x)dx
= Z a+b2
a
[f(x) +f(a+b−x)]g(2x−a)dx (2.14)
and
I(t) = Z b
a
1 2
f
tx+a
2 + (1−t)a+b 2
+f
ta+ 2b−x
2 + (1−t)a+b 2
g(x)dx
= Z a+b2
a
f
tx+ (1−t)a+b 2
(2.15)
+f
t(a+b−x) + (1−t)a+b 2
g(2x−a)dx for allt∈[0,1].
Now, by the convexity off and the hypothesis ofg, the inequality
f(x)−f
tx+ (1−t)a+b 2
g(2x−a) +
f(a+b−x)−f
t(a+b−x) + (1−t)a+b 2
g(2x−a)
≤(1−t)
x−a+b 2
f0(x)g(2x−a) + (1−t)
a+b 2 −x
f0(a+b−x)g(2x−a)
= (1−t) a+b
2 −x
[f0(a+b−x)−f0(x)]g(2x−a)
≤(1−t) a+b
2 −x
[f0(a+b−x)−f0(x)]kgk∞ holds for all t ∈[0,1] and x∈
a,a+b2
. Integrating the above inequalities overx on
a,a+b2
and using (2.13)−(2.15) and (1.11), we derive (2.2). (3) Using the convexity off, we have
f(a)−f a+b2
2 ≤ 1
2
a−a+b 2
f0(a) = a−b 4 f0(a) and
f(b)−f a+b2
2 ≤1
2
b−a+b 2
f0(b) = b−a 4 f0(b)
and taking their sum we obtain f(a) +f(b)
2 −f
a+b 2
≤ (f0(b)−f0(a)) (b−a)
4 .
Thus,
(2.16) f(a) +f(b) 2
Z b
a
g(x)dx−f a+b
2 Z b
a
g(x)dx
≤ (f0(b)−f0(a)) (b−a) 4
Z b
a
g(x)dx.
Finally, (2.3) follows from (1.11),(1.12) and (2.16). This completes the proof.
Remark 3. Letg(x) =b−a1 (x∈[a, b])in Theorem 2. ThenI(t) =H(t) (t∈[0,1]) and therefore Theorem 2 reduces to Theorem B.
In the following theorems, we shall point out some inequalities for the functions G, H, I, Sg considered above:
Theorem 4. Let f, g, G, I be defined as above. Then:
(1) The following inequality holds for allt∈[0,1]:
(2.17) I(t)≤G(t)
Z b
a
g(x)dx.
(2) If f is differentiable on [a, b] and g is bounded on [a, b], then, for all t ∈ [0,1], we have the inequality
(2.18) 0≤I(t)−f a+b
2 Z b
a
g(x)dx≤(b−a) [G(t)−H(t)]kgk∞, wherekgk∞= sup
x∈[a,b]
|g(x)|.
Proof. (1) Using simple techniques of integration, under the hypothesis of g, we have that the following identity holds on [0,1]:
(2.19) G(t) Z b
a
g(x)dx= Z a+b2
a
f
ta+ (1−t)a+b 2
+f
tb+ (1−t)a+b 2
g(2x−a)dx.
By Lemma 1, the following inequality holds for allt∈[0,1] andx∈ a,a+b2
. (2.20) f
tx+ (1−t)a+b 2
+f
t(a+b−x) + (1−t)a+b 2
≤f
ta+ (1−t)a+b 2
+f
tb+ (1−t)a+b 2
holds whenA=ta+(1−t)a+b2 , C=tx+(1−t)a+b2 , D=t(a+b−x)+(1−t)a+b2 and B = tb+ (1−t)a+b2 in Lemma 1. Multiplying the inequality (2.20) by g(2x−a), integrating both sides over x on
a,a+b2
and using identities (2.15) and (2.19), we derive (2.17).
(2) Using an integration by parts, we have that the following identity holds on [0,1]:
t Z a+b2
a
x−a+b 2
f0
tx+ (1−t)a+b 2
+ a+b
2 −x
f0
t(a+b−x) + (1−t)a+b 2
dx
=t Z b
a
x−a+b 2
f0
tx+ (1−t)a+b 2
dx
= (b−a) [G(t)−H(t)]. (2.21)
Now, by the convexity off,under the hypothesis ofg, the inequality
f
tx+ (1−t)a+b 2
−f a+b
2
g(2x−a) +
f
t(a+b−x) + (1−t)a+b 2
−f a+b
2
g(2x−a)
≤t
x−a+b 2
f0
tx+ (1−t)a+b 2
g(2x−a) +t
a+b 2 −x
f0
t(a+b−x) + (1−t)a+b 2
g(2x−a)
=t a+b
2 −x f0
t(a+b−x) + (1−t)a+b 2
−f0
tx+ (1−t)a+b 2
g(2x−a)
≤t a+b
2 −x f0
t(a+b−x) + (1−t)a+b 2
−f0
tx+ (1−t)a+b 2
kgk∞
holds for allt∈[0,1] andx∈ a,a+b2
. Integrating the above inequality over xon a,a+b2
and using (2.21) and (1.11), we derive (2.18).This completes the proof.
Remark 5. Letg(x) =b−a1 (x∈[a, b])in Theorem 4. ThenI(t) =H(t) (t∈[0,1]) and the inequalities (2.17)and(2.18)reduce to the inequalities(1.6) and(1.8), re- spectively.
Theorem 6. Let f, g, G, I, Sg be defined as above. Then we have the following results:
(1) Sg is convex on [0,1].
(2) The following inequalities hold for allt∈[0,1]:
G(t) Z b
a
g(x)dx≤Sg(t)
≤(1−t) Z b
a
1 2
f
x+a 2
+f
x+b 2
g(x)dx +t·f(a) +f(b)
2
Z b
a
g(x)dx
≤f(a) +f(b) 2
Z b
a
g(x)dx;
(2.22)
(2.23) I(1−t)≤Sg(t) ;
(2.24) I(t) +I(1−t)
2 ≤Sg(t). (3) The following inequality holds:
(2.25) sup
t∈[0,1]
Sg(t) =f(a) +f(b) 2
Z b
a
g(x)dx.
Proof. (1) It is easily observed from the convexity off that Sg is convex on [0,1]. (2) As for (1) of Theorem 4, we have that the following identity holds on [0,1]:
(2.26) Sg(t) =1 2
Z a+b2
a
[f(ta+ (1−t)x) +f(ta+ (1−t) (a+b−x))
+f(tb+ (1−t)x) +f(tb+ (1−t) (a+b−x))]g(2x−a)dx.
By Lemma 1, the following inequalities hold for allt∈[0,1] andx∈ a,a+b2
. (2.27) 2f
ta+ (1−t)a+b 2
≤f(ta+ (1−t)x) +f(ta+ (1−t) (a+b−x)) holds whenA=ta+(1−t)x, C=D=ta+(1−t)a+b2 andB=ta+(1−t) (a+b−x) in Lemma 1.
(2.28) 2f
tb+ (1−t)a+b 2
≤f(tb+ (1−t)x) +f(tb+ (1−t) (a+b−x)) holds whenA=tb+(1−t)x, C=D=tb+(1−t)a+b2 andB=tb+(1−t) (a+b−x) in Lemma 1. Multiplying the inequalities (2.27)−(2.28) byg(2x−a),integrating them overxon
a,a+b2
and using identities (2.19) and (2.26), we derive the first inequality of (2.22). Using the convexity of f and the inequality (1.12), the last
part of (2.22) holds. Next, by the convexity off and the identity (2.26), we get Ig(1−t) =
Z a+b2
a
f
(1−t)x+ta+b 2
+f
(1−t) (a+b−x) +ta+b 2
g(2x−a)dx
= Z a+b2
a
f
1
2(ta+ (1−t)x) +1
2(tb+ (1−t)x)
+f 1
2(ta+ (1−t) (a+b−x)) +1
2(tb+ (1−t) (a+b−x))
g(2x−a)dx
≤Sg(t) (2.29)
and the inequality (2.23) is proved. From (2.17), (2.22) and (2.23), we obtain (2.24).
(3) Using (2.22),the inequality (2.25) holds. This completes the proof.
Remark 7. Letg(x) =b−a1 (x∈[a, b])in Theorem 6. ThenI(t) =H(t) (t∈[0,1]), Sg(t) =L(t) (t∈[0,1]) and Theorem 6 reduces to Theorem D.
References
[1] J. Hadamard, ´Etude sur les propri´et´es des fonctions enti`eres en particulier d’une fonction consid´er´ee par Riemann,J. Math. Pures Appl.,58(1893), 171–215.
[2] S. S. Dragomir, Two mappings in connection to Hadamard’s inequalities, J. Math. Anal.
Appl.,167(1992), 49–56.
[3] S. S. Dragomir, A refinement of Hadamard’s inequality for isotonic linear functionals, Tamkang. J. Math.
[4] S. S. Dragomir, On the Hadamard’s inequality for convex on the co-ordinates in a rectangle from the plane,Taiwanese J. Math.,5(4) (2001), 775–788.
[5] S. S. Dragomir, Further properties of some mappings associated with Hermite-Hadamard inequalities,Tamkang. J. Math.,34(1) (2003), 45–57.
[6] S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard’s type for Lipschitzian mappings and their applications,J. Math. Anal. Appl.,245(2000), 489–501.
[7] S. S. Dragomir, D.S. Miloˇsevi´c and J. S´andor, On some refinements of Hadamard’s inequalities and applications,Univ. Belgrad. Publ. Elek. Fak. Sci. Math.,4(1993), 3–10.
[8] L. Fej´er, ¨Uber die Fourierreihen, II,Math. Naturwiss.Anz Ungar. Akad. Wiss., 24(1906), 369–390. (Hungarian).
[9] D. Y. Hwang, K. L. Tseng and G. S. Yang, Some Hadamard’s inequalities for co-ordinated convex functions in a rectangle from the plane,Taiwanese J. Math.,11(1) (2007), 63–73.
[10] K. L. Tseng, S. R. Hwang and S. S. Dragomir, On some new inequalities of Hermite- Hadamard-Fej´er type involving convex functions,Demonstratio Math.,XL(1) (2007), 51–64.
[11] K. L. Tseng, S. R. Hwang and S. S. Dragomir, Fej´er-type inequalities (I). Preprint, RGMIA Res. Rep. Coll., 12(2009), No. 4, Article 5. [Online http://www.staff.vu.edu.au/RGMIA/v12n4.asp].
[12] G. S. Yang and M. C. Hong, A note on Hadamard’s inequality,Tamkang. J. Math.,28(1) (1997), 33–37.
[13] G. S. Yang and K. L. Tseng, On certain integral inequalities related to Hermite-Hadamard inequalities,J. Math. Anal. Appl.,239(1999), 180–187.
[14] G. S. Yang and K. L. Tseng, Inequalities of Hadamard’s type for Lipschitzian mappings,J.
Math. Anal. Appl.,260(2001), 230–238.
[15] G. S. Yang and K. L. Tseng, On certain multiple integral inequalities related to Hermite- Hadamard inequalities,Utilitas Math.,62(2002), 131–142.
[16] G. S. Yang and K. L. Tseng, Inequalities of Hermite-Hadamard-Fej´er type for convex functions and Lipschitzian functions,Taiwanese J. Math.,7(3) (2003), 433–440.
Department of Mathematics, Aletheia University, Tamsui, Taiwan 25103.
E-mail address:[email protected]
China Institute of Technology, Nankang, Taipei, Taiwan 11522 E-mail address:[email protected]
School of Engineering and Science, Victoria University, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.
E-mail address:[email protected] URL:http://www.staff.vu.edu.au/RGMIA/dragomir/