Introduction to Calculus
– Some useful formulasQuadratics
If ax2+bx+c=0 then x= !b± b2!4ac 2a Binomial Theorem
(a+b)n = n 0
!
"#
$
%&an+ n
1
!
"#
$
%&an'1b1+ n
2
!
"#
$
%&an'2b2+…+ n
r
!
"#
$
%&an'rbr +…+ n
n
!
"#
$
%&bn
n r
!
"#
$
%& =nCr = n!
n'r
( )
!r!Binomial Expansions Taylor Expansions a+b
( )
2 =a2+2ab+b2 for n!0 : f(a+h)= f(a)+ f(j)(a)j=1 j!
"
n hj + f(n(n+1)+1)!( )
# hn+1a+b
( )
3=a3+3a2b+3ab2+b3a+b
( )
4 =a4 +4a3b+6a2b2+4ab3+b4Identities Products
cos2!+sin2! =1 2 sinAcosB=sin(A+B)+sin(A!B)
tan2!+1=sec2! 2 cosAsinB=sin(A+B)!sin(A!B)
cot2!+1=cos ec2! 2 cosAcosB=cos(A+B)+cos(A!B)
2 sinAsinB=cos(A!B)!cos(A+B)
Compound Angles Sums
sin
(
A+B)
=sinAcosB+cosAsinB sinC+sinD=2 sinC+D2 cosC!D 2 cos
(
A+B)
=cosAcosB!sinAsinB sinC!sinD=2 cosC+D2 sinC!D 2 tan
(
A+B)
= tanA+tanB1!tanAtanB cosC+cosD=2 cosC+D
2 cosC!D 2 cosC!cosC=2 sinC+D
2 sinC!D 2
OVER ....
Double Angles General Solutions
sin 2A=2 sinAcosA If sin! =sin" then ! =n#+($1)n",n%Z tan 2A= 2 tanA
1!tan2A If cos! =cos" then ! =2n#±",n$Z
cos 2A=cos2A!sin2A If tan! =tan" then ! =n# +",n$Z =2cos2A!1
=1 - 2 sin2A Differentiation
y= f(x)
dy
dx = f!(x)
c 0
xn nxn!1, n"R
lnx 1x
eax aeax
ax axln a
sinx cosx
cosx !sinx
tanx sec2x
secx secxtanx
co secx !co secxcotx
cotx !co sec2x
sin!1
( )
ax a21!x2tan!1
( )
ax a2+ax2ln cosx !tan(x)
Product Rule Quotient Rule
( f !g)"= "f !g+ f ! "g f g
!
"#
$
%&
' = g( 'f ) f ( 'g g2
Composite Function Rule Logarithmic Differentiation
f (g(x))!= !f (g(x)).g (x)!
(
ln f(x)z)
! = ff!(x)(x)or if y= f(u) and u=g(x) then dy dx = dy
du!du dx