• Tidak ada hasil yang ditemukan

Strategies for multivariable self-tuning control : a thesis in fulfilment of the requirements for the degree of Doctor of Philosophy in Industrial Management and Engineering at Massey University

N/A
N/A
Protected

Academic year: 2024

Membagikan "Strategies for multivariable self-tuning control : a thesis in fulfilment of the requirements for the degree of Doctor of Philosophy in Industrial Management and Engineering at Massey University"

Copied!
10
0
0

Teks penuh

(1)

Copyright is owned by the Author of the thesis. Permission is given for

a copy to be downloaded by an individual for the purpose of research and

private study only. The thesis may not be reproduced elsewhere without

the permission of the Author.

(2)

STRATEGIES FOR MULTIVAR I A BLE SELF-TUN I N G CONTROL

T imothy Heske th

B . Sc . Hons (E l P. c t r ical E n g i n e e ring)

tt,.Sc. (E l e c t r i cal Eng i n e e r i n g)

A tnes i s presen ted in fu l f i lment o f the requ i rements for the d eg ree o f Do c t o r o f Phi l o sophy in I nd u s trial Management and Engineering a t Massey

U n i versity.

J u l y , 1981

(3)

ABSTRACT

The research reported in this thesis develops strategi e s for apply ing self- tuning con trol theory to mu l t ivariable processes. Self-tuning control of sc�lar processes i s now reasonably wel l establ i shed , and att�n tion i s bei ng turned to the mul t iva riable problem, w i th its attendant computational burden to ove rcome, and add it ional considerat ions such as interaction and decoupl i ng. This the s i s sugges ts methods for deal i ng w i th these problems, and implements the controllers on one of the readi ly avai lable desk­

top mic rocomputer systems, provid ing a cheap yet effective contro l l er.

The research bui l d s on the work o f C larke and G awthrop [ 1 975 , 1 979] on impl i c i t control lers. The expl i c i t schemes are d erived from contro llers developed by We l l s tead and others [ 1 979 , ( a ) and ( b ) J,

[ 1 979 J u sing and the work on mul tivariable c ontrol lers by Bor i s son latt�rly Koivo [1980]. The ful l mul t i variable controller rel ies on s tandard techn iques for pole placement reported by Wolovi c h [ 1 974 ] .

The proposed contro llers remove interac tions between loops, and other d i s turbances, and ensure that each loop output a t ta in s the set-point requ i red for that loop. In parti cular , the expli c i t pole-placing controller requi re s a pole-placing calcu la tion for each loop , and removes the i n te ra c tions w i th a minimum-variance- l ike the resu l t ing c ontroller being modest in computational need s .

A solut ion is a l so proposed for the ful l mul tivariable pol e­

placing problem , which al lows a comparison to be made between the ful l mul tivariable solution and the s impler contro llers proposed.

It is found that the ful l mul tivariable con trol ler demands more computat ion , but that the resul t ing control may be no d ifferent from that a chieved w ith the s impler contro ller.

(i)

(4)

The programs which a re d escribed a re wri t ten in Fortran , in the form of subrout ines which are designed for incorporat ion i n to e x i sting control program su i tes. A l ternat ively , they may be run w i th a ded i cated supervi sory program to hand le t iming , input and ou tpu t , d i splay and s torage of info rma tion. The subrou tines a re general in the i r appl i c at ion , and the informat ion they need fo r any pa rti cular process may be established interact ively using a n offl ine program.

S imulation resu l ts a re presented which confirm the robus tness o f the pole placing controller , and ind icate that the proposed techn iques may be used to stabil ise and control a wide variety o f processes; those which a re non-min imum phase, certa in non- l inea r or unstable processe s. On-l ine con t ro l of a comme rcial heat exchanger process i s reported, the p rocess be i ng s imilar to others which have been reported, thus provid i ng a po int o f comparison o f self- tun ing contro l w ith o ther techniques. The process is multivariabl e. Good contro l is achieved , parti cu l a rly in the face of perturbat i ons to the p rocess which resul t i n changes to the parameters o f the mode l describing the proce s s behaviour, cond i tions under which some o ther con t rol lers may n o t b e suitable.

This research has contribu ted techn iques which may be appl i e d successfully t o mul t ivariable self- tuning cont rol. Effi c ient programs have been wri tten which implement the contro l l e rs on a mi crocomputer. Sugge s ti ons for future work include the

development of a program genera tor whic h w i ll al low more compac t code to be developed, d ed i cated to a particular process, and which will execute more quick ly. S tra tegies which t·etter enabl e self- tuning cont rol lers to d eal w i th non-l inear processes a re a lso of interest.

( i i)

(5)

A CK NOWLEDGEMENTS

I w i s h t o tha nk Pro f e s s o r J . K . S c o t t f o r h i s s u p p o r t , a nd t h e facil i t ies o ff e r e d by the De partm ent o f Ind u s t r i a l Manage m ent and Eng ineer in� t h e Ne w Zea l and Da i ry R e search I ns t i tu te , fo r a c c e s s t o th e i r p l a n t d u r i ng e x p e r i m e n t a l p h a s e s o f t h i s p r o j e c t; D r R . I . C h a p l i n , w h o m a d e p o s s i b l e t h e u s e o f I S I S a nd p r o vid e d supe rvis ion d u r ing the l a t te r s tages o f th i s resea rc� and m os t o f a l l , my wife , Bery l.

( i i i )

(6)

TABLE OF CONTENTS

Page

CHAPTER LITERATURE SURVEY

'1 . 0 In troduct ion . . • . • . . • . . . • . . • . . . . • . • . . . . • . . •

1 . 1 Sel f- tun ing regula tor based on

m inimum variance control . . . • . . . • • . . . • •

1 1 1 1 1 2 1 1 3 1 1 4

The CARMA model

Optimal pred iction and m inimum variance control . . . . • . • . • • • • . • • • • • •

Self-tuning . . . . Mul tivariable sel f- tun ing

regulators . . . • . • . . . • • • . . • . • • • . •

2 3 4

5 1 . 2 Impl i c i t optima l sel f- tun ing

con tro l lers . . . 6

1 2 . 1 1 2 . 2 1 2 . 3 1 . 2 . 4

Pred iction and control w i th known parame ters • . . . . • . . • . • • . • • • • • . • . • • . • 7 S e l f- tuning . . . . • . . . • • . • • • . . • • • • • . • • 9

C losed loop behaviour • . • . . . • • • . • • 1 2 Mul tivariable sel f-tun ing

controller • • . . . • • • • • • . • . • . . • • • . • . . • 1 3 1 . 3 Impl ic i t pol e assignment sel f-

tun ing control l ers . . . • . . • • • . • • • . • . . • • • • • 1 4 1 .3.1 Pol e assignment based on opt i m a l

self-tuning controller • • • • • • • . • • • • • 1 4 1 . 3 . 2 Deterministic pol e assign ing

controller • . • . • • • . . . . • • • • • • • • • • • • • • 1 5 1 . 4 Expl i c i t self- tuning controllers

w i th pole assignment • • . • • • • • • • . • • • . . • • • • 1 7 1 4 . 1

1 4 . 2 1 .4 . 3 1 .4 . 4

Determ in i stic pol e-assigning

contro l le r • • • • . • • • • • • • • . • • . • • • • • • • • 1 7 S tochastic pole-assigning regu l a tor 1 8 Po le a ss igning regulator w i th

varying time delays • • • • . • . • • • . • • • • • 2 1 S ervo self-tuners . . . . • . • • • • • • . • • . . • 22 1 . 5 Applicat ions • • • • • • • • • • • • • • • • • • • . . • • • • • • • • 25

1 5 1

1 5 . 2 Implemen ta tion . . . . • • . • • • • • • • . • • • • • • 25 Testing the algorithms • • . • • • • • • . • • • 27 1 . 6 Comparson of algori thms • • . • • • • • • • • • • • • • • 28

(iv)

(7)

CHAPTER 2

Page SELF-TUNING ALGORITHMS

2 . 0 I ntroduct ion . • . . • . . . • . . • • • . • • • • . • • 3 1 2 . 1 Pole plac ing mul t ivariable sel f-

tun ing control . . . 3 1 2 . 1 1

2. 1 . 2 2 . 1 . 3 2 . 1 4 2 . 1 5 2 . 1 . 6 2 . 1 7 2 . 1 . 8 2 . 1 9

Process description . . . • . 3 1

Mult ivariable contro l . . . . • . . . • . . • • 33

Scalar min imum variance regula tor w i th feed forward . . . • • . • 35

Po l e-placing contro l l e r • . • • . . . • . . . 37

Self- tuning on-l ine .. . . • . • . . . • • 4 0

Set point atta inment • • • . • . • • . . . • 4 1

Unmeasured d isturbances . . • . . . • • 4 3

Resta tement o f the mul t ivariable controller . . . • • • • . . . • . . . • 4 4

Non-minimum phase . . . • . . . • • • . . . . • 4 5 2 . 2 Impl ici t mul tivariable contro l l e r .. . • . . . . 46

2 . 2 . 1 2 . 2 . 2 2 . 2 . 3 2 . 2 . 4 2 . 2 . 5 2 . 2 . 6 2.2.7

Self-tuning . . . ••. . . •. . . 4 7

C losed loop . . . • . . . • . . . 48

Set point attainment . . . • 49

Disturbance rej ection . . . 49

Offse t e l imination . . . 4 9

O ther loop inputs as d i s tu rbances. 50

Summary . . . . • . . . • . . • . . . . 50 2 . 3 Ful l mul tivariable pole-plac i ng

control l e r . . . . . . . • . • . 51

Self- tuning case . . . • • . . . . • • . • 52

Se t point a ttain�ent . . . • • . • . . . . • . • 55

CHAPTER 3 METHOD

3 . 0 I ntroduction . . . • 57 3 . 1 Programs . . . 57

3 . 1 1

3 . 1 2 Expl i c i t pole plac ing a l gori thms . • 58

Programs for impl i c i t self-tun ing. 6 3 3 . 2 Computer systems . • . . . • • • • • • . . • . . • 6 5

3 . 2 . 1 3 . 2 . 2

M i n icomputer implementation . . . • • . 6 5

M i crocomputer implemen ta tion . . . • . . 6 6 3 . 3 Processes controlled . • . . • • • • • . • • • . . . • • 6 8

3 . 3 . 1 3 . 3 . 2

S imulations . • . . . • . . • . . . • . . • . • . • • 6 9

Hea t exchanger . . . • • . . . • . • . . • 70

(v)

(8)

CHAPTER 4 Page RESULTS

4 . 0 Introduction • • . . . • . • • . . . . . • . . . • . . . . • . • • . 72 4 . 1 S imulations w i th impl i c i t sel f-tun i ng

controller. . . .. . . 73 4 . 2 S imulations us ing expl i c i t

pole-plac i ng contro l l e r . . . 76 4 . 2 . 1

4 . 2 . 2

4 . 2 . 6 4. 2 . 7

S ingle loop processes . . . • . . • . . . 77

Choice o f observe r and model

polynomials . . . . • . . . . • . . . • . . . . • 9 2

Mul t ivariable processes . . • . . . 1 05

Processes with changing parame ters 1 1 2

Di ffe rences between pole plac ing

contro l l e rs . . . • • • . • • • • • • • . • . • . . . . • 1 2 2

The self- tuning property . . . ... . . 1 29

Ful l pol e-plac ing algori thm . • . . . • • 1 33 4 . 3 C ontrol of heat exchanger . . . • 1 40

4 . 3 . 1 4 . 3 . 2 4 -3 -3 . 4 . 3 . 4 4 -3 -5

Hea t exchanger process . . . • . . . . • 1 40

S imul a ti on of hea t exchange r . . . 1 4 1

S imula t i on resu l ts • . . • . . . • . . . 1 4 3

Resu l ts o f on- l i ne experiments . . • . 1 50

Onl ine impl i c i t c on trol . . . • 1 60

CHAPTER 5 DISCUSSION AND CONCLUSIONS

5.0 In troducti on . . . • . • . • 1 63 5. 1 D iscussi on o f results . . . • • . • • 1 64 5. 2 Me thods employed . . . . • • . . . • • . 1 69 5.3 Relationship to other sel f-tun ingc

control schemes . . . • . . . • 1 70

APPENDIX A Numerical examples of pole-placi ng

controller design . . . • . • • . . . • . 1 73

APPENDIX B Behaviour of heat exchange r under three

term control . . . • • . . . . • . • . . . . • • . • • 1 8 1

REFERENCES 183

(v i)

(9)

NOTATION

Bo l d fa ce l e t te r s a re u sed to repre s e n t polyno m i a l s , po lynomial matrices or matri ces. A polyno m i a l i s an expressi on i n the back­

ward shift operator q-1 • Thu s :

a q-nA nA

nA i s d e f i n e d to be the o rd e r o f the p o l yn o m i a l A. Po lyno m i a l s ope rate on process variable s so tha t :

y i s o n l y d e f i n e d a t d i s c r e t e t i m e i ns tan t s , y( t ) be i ng t h e ( sa m p l e d ) va l u e o f y a t the prese n t t i m e. y ( t- 1 ) , y ( t - 2 ) . • represent values o f y a t prev i ous sam pl i ng instants. The sampl ing i n te�ya l i s not expl i c itly s tated. The dependence of a polynom i al on q w i l l be om i tted for brev i ty unless ambi gu i ty resu l ts. A polynomial matri x may be represen ted equivalently by :

B = B 0 + B - 1 1 q + • • • + B nBq -nB where tne Bi Bre m x p matrices, or by :

l �� �

B1 2

:��J

B Bm1 mp

where the Bi j a re scalar polynomials o f order nB.

The s c�

f

a r quan t i ty A ( 1 ) i s the v a l u e o f polyno m i a l A e v a l u a ted w ith q = 1 .

P r o c e s s e s m ay b e repre s e n t e d i n A u to R egressive Movi ng Average (ARMA ) form by :

Ay ( t ) = q- kBu ( t ) + q-kDv ( t ) + Ce ( t ) + d

A , B , C a n d D a r e po l y n o m i a l s ( o r po l y n o m i a l m a t r i c e s ) repre sen t ing a s calar (or a mul t i variable) process. The process t i m e d e l ay k i s e x p re s s e d as a w ho l e numbe r of sa mpl i ng i nterval s. y( t) i s the process output , u(t) the contro l l ed input,

v( t) a m easured d isturbance and e ( t) a w h i te noi se sequence. d i s•

an o ffset .

y(t\t-k) is the predicted value of y at time t, given information up to and including time t-k.

(vii)

(10)

P rin cipa l symb o l s used in this thesis

k

i , j , l , m , n A, B, C, D

A1, A2, B1, C1 A', B', D', A•, B•

y(t)

w(t)

u(t), u ' (t)

v(t)

e(t), e '(t), e"(t)

d , d ' H,G,E

S1 , S2

P , P' , Q, Q', H, S

L, Jl, B1 , B2

(t), �;y;(t), K

X, 9, x(t)

�· 'f, '1'- Ao

time d e l ay indices

Process polynomial s/po lynomia l m a t rices

Proce s s ou tput Process s8t- point Cont rolled inpu t Measured d i s tu rbanc e Whi te noise sequences O ffse t va l ues

C on t r o l l e r p o l y no m ia l s Hu(t) + G y(T) + Ew(t) = 0

Mu l t iva riable pole p l a c i ng polynomia l ma trix

Po lyno m i als for se rvo c ont rol Gene ra l po lynomia l s

Sca l a r quantities Gene ra l ve c to r s

Polynomials spec i fying p o l es for po l e placement

Obse rve r polynomia l

(vi i i)

Referensi

Dokumen terkait

Table 4.7 Analysis of MAN OVA Latin Square variable by Type for subjects at work 85 Table 4.8 Summary of analysis of variance for replicated Latin Squares using pooled data 85 Table

Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only.. The thesis may not be reproduced elsewhere without the

Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only.. The thesis may not be reproduced elsewhere without the permission

ACKNOWLEDGMENTS I w ish t o express my gra t itude for the assistance rece ived dur ing the course of th is study: to my co llea gues who in one way or anot her, unknown to me have

Chapter 1 Preparation and Incubation of Cell Suspensions Total Cell Counts Viable Counts Formulae for Estimating Cell Viability from Cluster Viability Photography of Cells on Agar

Mean , Var iance and Range for Job Satisfaction and Vocat ional Compari son Scores by Pos i t ions in Tutorial School and Ward 145 6.. Homogene i ty of Variance for Job Sat is fac t ion

Affi ni ty- puri fi ed 125r-l abel l ed anti bodi es to FBPase and a l b umi n were used to quanti tate nas cent p rotei n chai ns on free and bound polysomes.. FBPase an ti body bound

2 Degra dation rates for vitami n A i n beef li ver puree mixtures at differing pH and copper concent rations, showing the natural l ogari thm of the concentration ratio as a