Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.
ASPECTS OF THE WATER BALANCE OF AN OATS CROP GROWN ON A LAYERED SOIL
A the s i s presented in partial fulfilment o f the requirements for the Degree of
Doctor of Philosophy in Soil Science at
Ma ssey University
BRENT EUAN CLOTHIER 1 9 7 7
ABSTRACT
The increasing pressure on our water r esources, for irrigation in particular, has resulted in a growing
awareness of the importance of water balance studies.
In this thesis three aspects of the field \>later balance are investigated� evapotranspiration (ET) from well-watered crops, the upper l imit of soil water storage in the field, and drainage.
Daily ET values, measured by the Bowen ratio-energy balance method, are presented for an oats crop grown in winter and also for a number of e.urruner crops, all of which were \\1ell-watered. ET measurements w ere also made over longer periods using a drainage lysimeter. It was found that the Penman, and Priestley and Taylor ET
estimation procedures predicted ET with an accuracy of 15-20% and 8% for daily and weekly periods, respectively6 The Priestley and Taylor method is simpler to use but requires an empirical constant ·to relate the 1 equilibriura
ET' to ET. This constant was found to be 1.21 for winter, spring and summer over a range of crops in the Hanawatu.
Net radiation data on a dayl ight basis were used to evaluate th is constant, as seasonal variations in the constant were introduced when 24-hour data were used ..
Also it is easier to empirically estimate daylight than 24-hour net radiation. Long term E'I' estimates using the Priestley and Taylor method with net radiation calculated from incoming solar radiation, were in reasonable agree
ment with the drainage l ysimeter measurements of ET for the oats crop.
A theoretical development is presented that describes water retention in soils underlain by a coarse-textured stratum. rrhis development accounts for the physical character of the overlying soil, the depth to the coarse layer, and the coarseness of the underlay. F'ield data are presented for the Manawatu fine sandy loam, a soil with a coarse-textured layer at ·90 cm. For this soil the layering resulted in an additional 55 mm of water
storage at the ces sation of drait-lage, an increa se of 31% over a similar hypothetical soil with the coarse stratum absent.
iii
Drainage from a permeable soil underla in by a coarse
textured layer is investigated. Simplified theory is used to develop a model relating the drainage flux at the ba se of the soil to the water stored in the over
lying soil. Despite sign ificant hy steresis in both the water retentivity curve of the overlying so il and the hydraulic conductivity-pre ssure potential relation
ship of the coarse layer, hystere sis had little effect on the storage-flux relation. The model simulated
both the field drainage in the Manawatu fine s andy loa1n measured by a lysimeter, and field profile water storage
found by neutron probe mo i sture mea surements. The model indicates that only simple field measurements are
needed to find the storage-flux relationship.
The components of the water balance of an autumn
so'Ym oats crop grown in the Hanawatu are resolved ..
Drainage lo s s was found to con stitute 60% of the rainfall, with the remaining amount being lost as ET.
ACKNOWLEDGEMENTS
I expres s my sincere thanks to my supervisor s, Dr s. Dave Scotter, Jim Kerr and Max Turner for their direction, encouragement and friendship during all the stage s of my work. I would al so like to thank
Prof. Keith Syer s and Dr Ken Mitchell for making it all po ssible. This work wa s carried out whil st I held
a U. G. C. Po stgraduate Scholarship and the 1 9 7 4 B. P.
( N . Z . ) Postgraduate Scholar ship, for which I am grateful.
To the D.S.I. R. I am grateful for the help that enabled me to do this work.
Thank s al so to John Talbot, Peter Menalda,
Peter Rollinson and Jim Gordon for a s sistance both in the field and laboratory.
To Penny Clothier, thanks for the continual encouragement and warm under standing.
For much typing I wish to thank Erin Temperton.
TABLE OF CONTENTS
Page
Abs�ract . .. . . • . . .. . . • • • . • • • • . • • • . • • . • • . . • . ii
Ac)<:now 1 edg em en t s • • • • .. • • • • • • • • • • • • • • • • • • .. • • • i v
Table of Contents • • • • • • • • • • • • • • • • • • • • • • • • • • v List of Figures • • • • • • • • • • • • • • • • e • • • • • • • • • • •
List of Tables • • • • • e • • •• • • • • • • • • • • • • • • • • • • •
List of S)"'"riJ:>ols • • • • •• • • • • • • • • • • • •
·
• • • • • • • • • •CBAPTER 1
viTA'rER BALANCE STUDIES • • • • • • • • • • • • •• • • • • • • • •
1 . 1 IJ:\TTRODUCTION • • • • • • • • • • • • • • • • • • • • • e • • • •
1. 2 THE FIELD WATER BALANCE EQUATION ... . 1 . 2 . 1 EVAPOTRANSPIRATION (ET) ... ..
1 . 2 . 2 MAXIMUM PROFILE WATER STORAGE
viii XV xvi
1 2 2 3
( , ... 7max) • • • • • • • • • • • • 0 • C" • • • • • • • e • 8 1 . 2. 3 PROFILE DRAINAGE ( J) • ., • • • • • • • • 12 1 . 2. LJ. SU�1A.RY &: • • • • • • • • • • • • .., • • • • • • • • • 15 1. 3 MATERIALS A-� METHODS • • • • • •• • • • • • • • • • • 17
CHAPTER 2
!-1EASURED M'D PREDICTED EVAPOTRANSPIRA'I'ION
FROM WELL-vll'.TERED CROPS • • • • • • • • • •• • • • o • • • •
2 . 1 INTRODUCTION •• • • • • • • • • • • • • •• • • • • • • • • •
2 . 2 EXPERIMENTAL METHODS AND MATERIALS • • •
2 . 3 RESULTS • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
2 . 4 CONCLUSIONS AND SDr�'iMARY • • • • • • • •• • • • • •
CHAPTER 3
WATER RETENTION IN SOIL UNDERLAIN BY
A COARSE-TEXTURE!D LAYER • • • • • • • • • • • • • • • •• • •
3.1 IJ:\TTRODUCTION • • • • • • • • • • • • • • • • • • • • • • • � •
3 . 2 3.3 3.4 3.,5
TfiEORY . ... . .. .. o • • • • • • • • &; . . . .. . . . .
EXPERIMENTAL METHODS AND MATERIALS • • •
RESULTS • • • • • • • • • • • • • • • • • • • ., e • • • • • • o • •
SUi-".J\·IARY AND CONCLUSIONS � o • o • � e • • • • • • •
19 2 0 2 2 2 6 39
40 41 43 5 3 5 7 6 1
CHAPTER 4
DRAINAGE FLUX IN PERHEABLE SOIL UNDERLAIN BY A COARSE-'l'BX'I'URED LAYER ... ... .
4.1 INTRODUCTION .. ... .. ... .
4 . 2 THEORY • •• • • • • • • • • • • • •• • • • • •• • • • •• •• • 4. 3 !1ATERIALS AND Mr:::'I'HODS • • • • •• • •• • • • • ••
4.4 RESULTS AND DISCUSSION • • • • • • • • •• •• ••
4.5 CONCLUSION • • •• • • • • • • • ••• • •• • • • •• • •••
CI-IAPTER 5
CONCLUSIONS AND SUMMARY • •• • • • • • • • • • • •• • • •
5.1 THE OVERALL WATER BALANCE ........... . 5.2 SUMMARY OF RESULTS • • • • • •• • • • • • •• • • ••
APPENDIX I
ERROR ANALYSIS OF THE B OWEN RATIO-ENERGY B ALANCE HETHOD OF ET ESTIMATION • •• • • • • • ••
Al.l INTRODUCTION • •• • •• • •• • • • • • • • • • • • • •• •
Al. 2 TI-IEORY ... . . Al.3 RESULTS
Al.3.1
1\1.3.2 Al.3.3
• • • • • • • • • • • • • • • • • • • • • 0 • • • • u • •
. ERROR CONTRIBUTION DUE TO THE PSYCHROI1ETER CONSTANT • • • • • •
TEMPERATURE MEASUREMENT ERROR NET RADIATION MEASURE�SNT
�Ftf<()�. • •• • • • • • •• • • • • • • •• • • • • Al. 4 DETER..�INATION OF THE ERROR IN ET ...
APPENDIX II
NEUTRON PROBE CALIBRATION • • • • • • •• • • • • • • ••
A2.1 INTRODUCTION • • • • •• • • • • • • • • •� • • • • • • ••
A2. 2 THEORY • • •• • • • • ., o •• • • e • • • • • •• • • • • • •• • A2 .. 3 EXPERU.1E:t-1TAL . . . . . . . . . . . . . . . . . . . . . . . .
Page
63 64 65 66 71 84
87 88 91
94 95 96 97
97 100
lOO 102
103 104
104
106
vi
APPENDIX III
SCIL PROFILE DESCRIPTION • • • • • • • • •• • • • • • • A3.1 SPATIAL VARIATION • • • • • • • • • • • • • • • • • • A3. 2 PROFILE DESCRIPTION • • • • • • • • • • • • • • • •
APPEJ\TJ)IX . IV
CROP DESCRIPTION • • •• ••• • • • • • • • • • • • • • • • • •
A4 . 1 IN�RODUCTION • • • •• • • • • • • •• • • • • • • • • • • A4. 2 CROP AGRONOMY • • • • • • • • • • •• • • • • • • • • • •
BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vii Page
109 110 110
114 115 115
118
Fig.l.l
Fig.l.2
Fig.l.3
Fig.2.1
Fig.2.2
Fig . • 2 . 3
LIST OF FIGURES
PeP�an and Thornthwaite esti�ates of weekly ET for Palrnerston North over the suwmer of 197 4/75 compared to
est.imat es using Priestley and Taylor's method ( ET ( P & T ) ) (After Clothier ll al . 1975 ) . • • • . • • • . • . . . • . • • . • • • . . . •
Water content at 30 cm depth in uniform soil , and the same soil underlain by sand at 61 cm and 1 2 2 cm depths and by gravel at 12 2 cm,as affected by the time after irrigation . Surface evaporation
Page
7
prevented ( After Miller , 1969 ) • • • • • • • 14
Comparison of predicted drainage flux ( Eq. 1.6 ) with that measured for the Yolo loam, Hiller silty clay and Cobb
loamy sand {After Davidson et al. 1969 ) . 16
Comparison of measured evapotranspiration ( ET} against computed Penman estima·tes ( ET )p , for oats. The correlation
coefficient (R) and S yx applu to the - .I
linear regression equation�c••••••••••
Comparison of measured ET against the
24 hour value of the equilibrium evaporat
ion rate ( ET eq ) for oats , S yx calculated for the regression line constrained
through the origin • • • • • • • • • • • • • • • • • •
Comparison of measured ET against the daylight ET eq , for oats • • • • • • • • • • • • •
27
2 8
30
Fig . 2 . 4
Fig.2 . 5
Fig.2.6
Fig . 2.7
Fig.3.1
Fig.3 . 2
Fig.3 . 3
Regression of incoming solar radiation (K-!< ) against the net radiation (Rn) measured over oats . Both the 24 hour and daylight regressions are shown • •
Ratio of daylight ET/E'Feq(i . e. o<} for oats from winter to early summer.
Days when free water was· noted on the crop are indicated ( o ) • The mean monthly temperature is sho\m . The limits on 0< o f 1 and ( s + � ) / s suggested by Eq . 2 . 3 are also shown
(---) • . . • • . . . • . • . . . • • . . • . • • . . • . . . .
Predicted ET (1.2 2 ET ) for selected eq periods against the ET measured from a water balance applied to the lysimeter growing oats. The error band is ± 0.05
ix Page
3 2
3 3
(rainfall) over the period • • • • o • • • • • • • 35
Comparison of measured ET over oats ( 0 ) and lucerne , paspalum or pasture (0} against the daylight ETeq • • • • • $ c � ·
Variation in the water retentivity curve due to changing the value of the pore
38
size distribution index A
.,
•..
• • • • • • • • • • 44The pressure potential profile in
a layered soil and in a uniform soil at the cessation of drainage • • • • • • • • • • • • •
The increase in storage 6W 1 as
a function of the pore size distribution index A. , for varying
-y}
i 1 the cut-off potential in the underlay . Inset.The increase in storage as a function
46
of
y,.,
1 forA
= A max • • • • • • • • • • • • • • • 49Fig.3 .4
Fig.3 .5
Fig . 3 .6
Fig.3 .7
Fig .. 3 .8
The increase in storage Aw, as a function of the pore size
distribution index A , for varying z. the soil depth. Inset. The
l. .
increase in storage a s a function of z . for 1.
A
=A
max . . . . • • . • . . . • .The increase in storage �W, in a soil with secondary layering a t depth zL.
The subscript '11 refers to the soil zL < z � zi and 1 2 1 to the soil
0 � z � zL. Inset. The increase in storage as a function of
.A
2 forA
1=
Almax.
• • • • • • • • • • • • • • • • • • • • • • • • • • •Drying water retentivity curves for the three profile elements of a Manawatu fine sandy loam • • • • • • • • • • • • • • • • • • • •
Hydraulic conductivity curves for two of the profile elements of a Manawatu . fine sandy loam. Drainage is considered
X
Page
50
52
negligible wl1en K < 10 -l cm/day e • • · · · 56
Field tensiometer pressure potential
data showing the decline in potential for a Manawatu fine sandy loam following
a heavy w�nter rainfall of 2 9 mm . Over the subsequent 35 day period evapo
transpiration losses o f 70.5 mm were offset by 19 small rainfalls totalling
6 6.2 rmn. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 58
Fig. 3. 9a Predicted prof iles of v1ator con·tent in a Manav>Tatu fine sandy loam, with and without the gravelly coarse sand layer
xi
Page Fig.3.9b Field neutron probe data for
Pig.4.1
Fig.4.2
Fig.4.3
Fig.4.4
a .Hanawatu sandy loam compared with the predicted profile of
water content • • • • • • • • • • • • • • • • � • • •
The -.-vater retentivity curves for the three profile elements of a Manawatu fine sandy loam. Mea sured hysteresis loops ( + ) and compu·ted scanning
curves (·�·) are shown for the gravelly coarse sand and fine sand. The
scanning loops for various soil
profile depths are shown for the fine sand. Field data for the fine sand
( l!l ) and fine sandy loam ( 0 ) are also presented . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hydraulic conductivity curves for all three profile elements of a Manawatu
60
68
fine sandy loam • • • • • • • • • • • • • • • • • • • • • • 69
Predicted wettest and driest profiles ( ignoring evapotranspiration ) of
water content in a Manawatu fine sandy loam. The two wettest and driest water content profiles
recorded between May and September
1975 are also shown · • • • • • • • • • • • • •• • 7 3
Measured tensiometer pressure potential in the gravelly coarse sand at 100 cm depth during the winter of 197 5, and predicted tensiometer pressure
potential in comparison with field measurements at depths of 40 cm and
60 cm in the soil profile.,., • • o • • • • • • 7 5
Fig . 4 . 5
Fig . 4 . 6
Fig. 4 . 7
Fig . 4 . 8
Fig.4 . 9
Predicted wetting and drying drainage flux - profile water storage .relatio�
xii Page
ships for a Manawatu f ine sandy loam ••• 7 6
Predicted decline in profile water storage with time in comparison with that measured by the neutron probe at two sites following two heavy winter
rainfalls • ee •• •• • • •• • o• •• •• • •• o• • ••• •• 7 8
Predicted decline in drainage flux with time in comparison to the drainage flux computed from the neutron probe data in Fig.4 . 6 , and the mean of that measured by the lysimeter over four drainage events . . . . . . . . . . . . . . . . . . . .
Neutron probe profile water content data at two sites , in comparison with that predicted for 1 9 7 4 and 1975.
Also , the drainage flux predicted , in comparison with that measured by the
7 9
lysimeter in 197 4 and 19 75. . . .. . . 81
Predicted drainage in relation to that measured by the lysimeter , for both
1974 and 1975 • • • • •• • • ••• •• • • • •• • • • • • • 82
Fig . 4 . 10 The decline in profile water storage for a uniform soil o f fine sand , predicted using the model of Black et al . ( 1969 ) , in comparison to the decline predicted for a fine sand
underlain by a layer of gravelly coarse sand using Eq . 4 . 6 • • • •• • • • • • •• • • •• •• •
Fig.Al. l Ratio of the psychrometer to the
psychrometric constunt as a function o f the aspiration flow rate for four
85
different experimental runs .. . .. . . . .. •.. 99
Fig.Al.2 Comparison of daily net radiation measured by t\"lo different net
radiometers. The daily total of one found by integration of 1 minute sampling on a data logger and the other by analogue integrationo•••
Fig.A2.1 Soil moisture content ( cm3/cm3 ) in comparison with the count ratio .  Also sho\v.n is the calibration curve
xiii Page
101
supplied by Troxler • • • • • • • • • • • • • • • • 108 Fig.A3 . 1 The profile of Hanawatu fine sandy
loam • • . ft e . . . 112 Fig.A3.2 The interface between the fine sand
and gravelly coarse sand of Manawatu fine sandy loam. The range.in height
of the interface in this photo is
10
cm . 113Fig.A4 . 1 Seasonal changes in yield components and dry matter % (Dm) of total forage for the 1974 oats crop ( After Kerr
and Menalda , 1976 ) • • • • • • • • • • • • • • • • • • 116 Fig.A4.2 Seasonal changes in the height and
leaf area index ( LAI) of the 1974 oats
crop . • . . . • . . . • • . . • . • . . . • . . . • 117
Table 1 . 1
Table 2 . 1
Table 3 . 1
Table 5 . 1
LIST OF TABLES
Page
Estimates of the available water storage based on \'1 max at a pressure potential of -340 cm, in relation to that observed in the field, for
4 soils underlain by a coarse layer.
(Miller, 1969 ) • • • • • • • • • • • • • • • • • • • • • 11 Comparison of monthly values of 1.22
ET eq and Penman estimates of evapo
transpiration ( ET p ) for Palmerston
North • . . . • • • . • • . • . . • • • • . . . • • • • . • • . • 3 6 Physical characteristics of Manawatu
fine sandy loam • • • • e • • • • • • • • • • • • • • • 55
Estimates of the components of the water balance of oats grown
in the Manawatu during 1974 and 1975 . The figures in brackets are the values of the components in terms of %
rainfall. Also shown is the mean rainfall { 1941-1970 ) . All values
1.n nun • • • • • • • • • • • • • • ., • • • • • • • 0 • • • • • • 89 Table A3.1 Profile description of the Manawatu
fine sandy loam • • • • • • • • • • • • • • • • • • • 111
a b
c C. R .
e .Ae
ET" eq f(u) f(w}
G H
J J, l.
LIST OF SW.LBOLS
empirical constant in Eq. 1.3 exponent in Eq. 1.3
convective term in the combination evaporation equation
counts per second in soil/counts per second in neutron probe radiation shield
specific heat capacity of air soil depth
soil water diffusivity plant dry matter %
change in surface water detention vapour pressure
difference in vapour pressure betwe.en two levels above crop
saturated vapour pressure evapotranspiration
Penman's evapotranspiration estimate·
equilibrium evapotranspiration rate daylight equilibrium evapotrans
piration rate
nocturnal equilibrium evapotrans
piration rate
wind function in Penman's equation
drainage flux-profile storage - relationship
soil heat flux sensible heat flux
drainage flux
drainage flux in coarse underlay
UNITS
dimensioriless
mm day -1
dimensionless
�1 -1·
J g c cm 2 _, cm day - dimensionless
mm
mb
mb mb
mm day -1 or
\''lm -2
mm day-l
mm day-l
rnrn day -1
mm day -1
mm day-l
mb-1
mm day -1
mm day-1 Wm-2
mm day -] -
\!Jm - 2
mm day-l
mm day-l or
or
K
I<. �
Kf
K s K-!-
L LAI Ll'
m
p
Ph
r s
R n
RO RF R S. D ..
s
-T Tma::x:
L2
Tmin Td,TW ATd'
ATW
hydraulic conductivity
hydraulic conductivity of the coarse underlay
hydraulic conductivity of the over
lying soil
saturated hydraulic conductivity incoming solar radiation
latent heat of vapourization leaf area index
characteristic length of soil particles
slope of the K-loge(S) curve atmospheric pressure
energy used in co2 fixation by photosynthesis
crop resistance to water vapour net radiation
run off rainfall
simple correlation coefficient standard deviation
crop hea·t storage change
slope of the saturated vapour pressure-temperature curve
standard error of the regression estimate
mean daily temperature maximum daily temperature minimum daily temperature
dry bulb, wet bulb temperature dry bulb, wet bulb temperature
difference betvveen two levels above crop
xvi
UNITS cm day -1 cm day -1
cm day-l cm day -1
mm day -1 or
\'lrn-2 Wm -3
dimensionless
mm
mb
mm day -1 or YVm-2
sec cm -1
mm day -1 or
Wm -2 . mm
mm
dimensionless
mm day -1 or 'Nm-2
c c c c
c
t
u
Vl max
w . m1n
z z. 1
0(
time
wind speed
saturation vapour pressure deficit profile soil water storage
profilG soil v1ater storage at time t uniform soil profile water storage layered soil profile water storage WL - Wu
maximum profile soil water storage minimum profile soil water storage soil cl�pth measured from soil surface soil depth to coarse layer interface soil depth to secondary layering aerodynamic surface roughness depth defined by Eq. 3.8
empirical constant, ET/ETeq Bowen ratio
psychrometric constant psychrometer constant error operator
slope of the log K- loge curve volumetric soil v1ater content volumetric soil ,.,ater content at time t
saturated volumetric water content difference between
�*
and�
(Eq.Al.l2) pore size distribution indexpore size distribution index when d ( AVJ) /dA. =
0
xvii
UNI'rS
day
-1
m sec or
k.rn
day-1
mb cm cm cm cm cm cm cm cm cm cm cm cm
dimensionless dimensionless
mb c-1 mb c-
1
cm3 cm-3 3 -3 cm cm
3 -3 cm cm
dimensionless dimensionless
'
ratio of the molecular weight of water to airsoil bulk density time
tensiometer pressure potantial air entry pressure potential
pressure potential when J = 1 mm day -1
' -1
pressure potent�al when Ji = 1 mm day
xviii UNI'l.'S
dirnensionless g ern -3
day ern ern ern ern