Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.
HEAT TRANSFER DURING FREEZING OF FOODS AND PREDI CTI ON OF FREEZI NG THJES
A th e s i s pre s e n t e d in part i al ful f i lm en t of t h e re qui r em e n t s f o r the d e gre e of Do c t or o f Ph i l o s ophy in Bi o t e c hn o l ogy at M a s s e y Un ive r s i ty.
AN DREW CHARLE S CLELAND
1 9 7 7
HEAT TRANSFER DUR I NG FREE ZI N G OF FO ODS AND PREDI CTI O N OF FREEZING TD!ES
ABSTRA CT
A study o f m e thod s for pr e d i c t i n g the fre e z i n g t im e o f f ood s wa s m ad e . F our shap e s - fin i t e s l ab s , cy l i n d er s , s ph e r e s and r e c tan gul ar br i cks we r e c on s i d ere d .
For e ac h shap� e xperim e n t al m e asurement s o f the fr e e z i n g t i m e were m ad e over a wi d e range o f c ond i t i on s u s in g Karl sruhe t e s t sub s t an c e , a d e f i n e d an alogu e mat e ri al . Exp e r im e nt s vri th slabs o f m in c e d l e an b e e f and m a sh e d p o t a t o we re al s o c ondu c t e d .
Prac t i c al food fre e z ing pro bl em s , wh ere t h e m a t e r i al i s i n i t i al ly sup erh e a t ed ab ove i t s fr e e zing p o i n t an d t h e t h i rd k i n d o f bound ary c ond i t i on
(
c onve c t ive c o o l in g)
i sa p pl i ed , have n o t be e n s o lved an al y t i c ally be c au s e o f t h e n on - l in ear b ound ary c on d i t i o n s . Fo o d mat e r i al s whe n fre e z i ng r e l e as e l at e n t h e at over a r ange o f temp e rature whi ch fur t h e r c om p l i cate s any at tempt at s o luti o n.
The a c c uracy o f t h e var i ou s s o lut i on s t o the fr e e z i n g p r o b l em pro p o s e d in t h e l i t e ratur e was evaluat e d b y c om p ar i s o n o f the various c al c ulat e d fr e e z ing t im e s wi th t h e e x p erim e nt al ly d e t e rm i n e d value s ove r a t o tal o f
1 87
fre e z ine experiment s.
Fo r th o s e s o lut i on s r e quiring nume ri c al e valuat i on , t h e b e s t wa s found t o b e a thre e -l e vel fin i t e d i fferen c e s c h e m e whi c h g en erally gave a p re d i c t i on o f the fr e e z in g t im e t o wi thin
29%
o f the e xpe r i me n t al value s wi th9 5%
c on fi d e n c e . With the r e gular g e ometri c shap e s inv e s t i ga t e d f i n i t e e l em e n t s have n o advan t ag e over fin i t e d i fferen c e s a n d w ere not c on s i d e r e d .
For the exi s t in g e xa c t an d approxim ate an alyt i c al s olut i on s , i t i s shown that th e s e d o not give ac cura t e
p r e d i c t i o n o f th e fre e z ing t im e for any of t h e four shape s ,
mai n ly b e c aus e all but t wo of th e s e solut i o n s d o not t ake ac c oun t of in i t i al sup erh e at in the mat e ri al to be fro z en, and t h e s e t wo s olution s are for i n i t i al sup e rheat in a s e m i -i n fi n i te s lab, n o t a fin i t e slab .
For the exi sting empiri c ally m o d i f i e d s olu t i on s and em p i r i c al relat i on sh i p s , i t i s shown that t h e y do not give ac curate pre d i c t i o n of fre e z i n g t im e ; at b e s t the 9 5%
c on f i d e n c e li mi t s of the p e r c e n t age d i ffe r e n c e b etwe en th e c alcula t e d and experim en t al fr e e z i n g tim e s ar e O% t o + 2 0%
f o r s l ab s , cylinde rs ·and sphere s .
All s olu t i ons for fr e e z i n g of r e c t an gular bri ck s wi th t h e third k i nd of bound ary c on d i t i on use the ge o m e tri c fac t or s d e ri v e d by Pl ank . Th e s e fac t ors are shown to be s ubje c t to e rror, the e rror i n c r e a s ing as the rat i o s of the t wo l arger d im en s i ons to the sm alle s t i n c r e a s e .
A group o f formulae i s propos e d wh i ch ar e s imple to u s e and g i ve ac curat e pr e d i c t i on of fre ez i n g t im e . They m o d i fy the g e om e tric fac t o r s i n Pl ank ' s e q�ation , t ak i n g i n i t i al sup e rheat i n t o ac c oun t , and i n th e c a s e o f r e c t an gular bri c k s c orre c t t h e e rr o r s inhe rent i n the s e ge o m e t r i c fac t ors . Thi s group o f s im ple form ulae are shown t o p r e d i c t the fr e e z ing t im e wi th 9 5% c onfi d e n c e t o wi thin 5%
o f t h e expe r i mental val u e s for s labs, to wi t hin
7%
fo rc yli n d e r s and spher e s , and to wi thin 1 0% for r e c t an gul ar b r i ck s .
The pr e d i c t i on ac c urac y of the s imple formulae and the t hree le vel fin ite d i ffe r e n c e s ch e m e ar e s i m i lar but the s im ple formulae can b e c alc ulat e d qui ckly wi thout the us e of a c om pu t e r whi ch i s a b i g ad vantage . I n ad d i t i on t o s im pli c i ty and ac curacy t h e s i m p l e formulae are als o v e r s a t i l e , and by use o f s u i t ab le approximat i on s c an handle s om e prac t i c al problem s i n whi ch c on d i t i on s chan g e wi th t im e .
ACKNOWLEDGEMENTS
I
wi sh t o acknowl edge the fol l owi ng:-- Prof e s sor R . L . Earl e for hi s sup e rvi sion an d as s i s t an c e .
- Dr . S . H . Ri c h e r t and Dr . R . H . Vi l l e t for th e i r sup er
vi s i on .
- Hoe c h s t N e w Ze aland· Lim i t e d for suppl yi n g m e thy l c e l lu
l os e s ampl e s .
- Dr . I.F. Boa.g for valuab l e as s i s t an c e in the s t at i s t i c al an alys i s of d at a .
- M r . J.T. Al g e r and Mr . D . W . Coul i ng for t h e i r a s s i s t an c e i n bui l d in g an d main t aining e qu i pm ent .
- Ros em ary for moral support and for proof r e ad i ng .
1
2 2 . 1 2 . 1
•1 2 . 1
•2 2 . 1 . 3 2 . 2 2 . 2 . 1 2 . 2 . 2 2 . 2 . 2 . 1 2 . 2 . 2 . 2
2 . 2 . 2 . 3 2 . 2 . 2 . 4 2 . 2 . 3 2 . 2 . 4 2 . 2 . 5 2o 2 . 6 2 . 3
2 . 4 3
COHT ENT S ABS TRACT�
A CKN OWLEDG El'-IENT S • CONT EN T S .
L I S T OF FIGURES.
LI ST OF TABLES.
I N TRODUCT I ON.
LITER ATURE REVI EW.
Probl em De fini t i on .
De fin i t i on of fr e e z ing t i m e . Boun d ary c on d i t i on s .
I n i t i al c on d i ti on s .
Solution s U s in g t h e A s sumpt i on of a Un i que Fr e e z i n g T e mp e ratur e .
Exac t s ol u t i on s for s l ab s.
Approxim at e s olution s for s la b s . I n t e gral profi l e an d
vari at i on al t e chn i qu e s . Solu t i on s for all oy s ol i d i fi c ation.
Oth e r an al y t i c al approa c h e s .
2 4 5 1 0
1 4 1 6
1 8 1 8 1 8 1 9 20
2 1 2 1 2 1 2 1
2 2 2 3
Solution s for aqu e ous sy s t em s .
2 3
Sol u t i on s for other shap e s .
23
Empi r i c al r e l a t i on ships.
24
Us e of analogu e s.
Num er i c a l s ol ut i on s.
Solution s U s ing Changing Apparent Spe c i fi c H e at Cap ac i ty and Vary i n g Th erm al Con du c t i vi ty.
Summ ary .
PRELHTINARY CON S I DERATIONS
2 5 2 6
26
28
30
4 4 . 1 4 . 2 4 . 3 4 . 3 . 1 4 . 3 . 2 4 . 3 . 3 4 . 3 . 4
4 . 3 . 5 4 . 4
4 . 4 . 1 4 . 4 . 2 4 . 4 . 3 4 . 4 . 4 4 . 4 . 5 4 . 5
4 . 5 . 1 4 . 5 . 2 4 . 5 . 3 4 . 5 . 4 4 . 5 . 5
5 5 . 1 5 . 2 5 . 3 5 . 4
COLLECTI ON OF EXPERH;EI\TAL DATA .
3 2
I n troduc t i on .
3 2
Choice of Freez ing Mat er i al.
3 2
One-Dimen s i on al Heat Tran sfer i n Slabs.
3 4
The equi pmen t.
3 4
Di m en s i on al m easur ement and
con t rol .
3 5
Tem perature measuremen t and
control .
38
Measurem ent and c on t rol o f the
sur fac e heat transfer c oeff i c i ent .
39
Analysi s o f heat tran s fer i n s lab s .
4 1
Rad i al Heat Trans fer i n Cyl inders and Spheres.
The equi pmen t .
Di men s i on al measurement an d control .
Tem perature measuremen t and con t rol .
Measurement an d c on t rol of the
4 5 4 5
5 5 5 5
sur fac e heat tran s fer c oef f i c i en t .
5 5
Anal y s i s of heat t ran s fer i n
rad i al geometry .
58
Three-Dim en s i onal Heat Tran s fer i n
Rec tangular Bri c ks.
6 5
The equ i pm en t.
6 5
Di m en s i onal neasuremen t and
con t rol .
6 6
Tem perature m easuremen t and
con trol .
67
Measurem en t and con t rol of the
sur face heat t rans fer coef f i c i en t .
6 7
Analy s i s of heat tran s fer i n rec t an gular bri c ks .
EXPERIMEN TAL DES I GN AND RESULTS.
I n trodu c t i on . Slabs.
Cylinder s and Spheres.
Rec tangul ar Bri c k s .
6 8
7 1
7 1
7 1
7 3
74
6
6 . 1 6
•1
•1 6 . 1
•2 6 . 1 . 3
6 . 2 6 . 2 . 1 6 . 2 . 2 6 . 2 . 3
6 . 3 6 .3 . 1 6 .3 . 2 6 .3 .3
6 . 4 7
7 . 1 7 . 2 7 . 2 . 1 7 . 2 . 2 7 . 2 . 3
7 . 2 . 4 7 . 3 7 . 3 . 1 7 . 3 . 2
PREDI C TI ON OF FREEZI NG TD·iE BY NUNER I CAL JVIETHODS
S l ab s .
Se l e c t i on o f n um eri c al m ethod . Se l e c t i o n o f f i n i t e d i f f e r en c e appro ach .
Compar i s on o f f i n i t e d i f f e r e n c e s ch em e s .
Cylinders and Sph e r e s .
Se l e c t i o n o f n um erical m eth o d . S�l e ct i o n o f f i n i t e d i ff er e n c e appr o ach .
C o mpari s o n o f f i n i t e d i f f e r en c e s ch em e s .
R e c tangu l ar Bri ck s .
Se l e c t i o n o f n umeri cal m e th o d . S e l e ct i o n o f f i n i t e d i ff e r e nc e m e tho d .
Us e o f the fin i t e diff e r e n c e s c h em e .
Summary .
PREDI CT I ON OF FREE Z I NG TH·IE BY S I JV1PLE FORNULAE .
Th ermal Dat a . S l abs .
S o lut i on s for th e first k i n d o f boun d ar y c on d i t i on .
Solut i o n s f o r th e third k i n d o f bound ary c o nd i t i on .
Empi r i c al m o d i fi c at i o n s and formul ae .
Pr e s ent d e ve l o pm ents . Cyl inder s and Sph e r e s .
Solut i o n s for th e fi rst k i n d o f b oun d ar y c on d i ti on .
Solut i o n s f o r th e thi rd k i n d o f b ound ar y c on d i t i on .
93 9 3 9 3 9 5
9 6 1 05 1 05 1 06
1 06 1 1 2 1 1 2 1 1 2
1 13 1 1 9
1 2 1
1 2 1
1 2 1
1 23
1 23
1 28
1 29
1 3 1
1 3 1
1 34
7 . 3 . 3
7 . 3 . 3 . 1 7 . 3 . 3 . 2 7 . 3 . 4 7 . 4 7 . 4 . 1 7 . 4 . 2 8
9
9 . 1 9 . 2 9 . 3 9 . 4
9 . 5 9 . 6 9 . 7 1 0
1
2
3 4 5
Empi r i c al modifi c ation s and
formul ae .
1 3 4
Cyl i n d e r s .
1 34
S ph e r e s .
1 3 5
Pr e s e n t d evelopm en t s .
1 36
Re c t angul ar Bri c k s .
1 3 7
Exi s t i n g formul ae .
1 3 7
Pr e s e n t d eve lopm ents .
1 4 1
COJV:PARI SON OF NUTv:ERI CAL AND SI MPLE f,lETHODS
FOR PREDI CTING FREEZING TD,lE S .
1 4 5
PREDI CTICN OF FOOD FREE ZI NG TifviES FOR
S I TUATIONS WI TH NON-CONSTANT COND I TI ONS.
1 6 1
I n troduc t i on .
Vary ing Am b i ent T em perature . Non-Uni form I n i t i al Tem peratur e . Ch an �ing Sur fac e Heat Trans fer Coe ffi c i en t .
I r r e gul ar G e ome t ry.
Non -H om og e n e ou s Food Mat erial . Summ ary .
CONCLUSIONS . NOT-!EI\CLATURE. REFERENCES.
APPENDICES .
G e n e ral De s c ri pti on of Fini t e Di fferen c e Program s .
One -Dim en s i on al Fini t e Diffe r en c e Program s .
T wo- and Thr e e - Di m en s i onal Fi n i t e Di ff eren c e Program s .
Rad i al Fi n i t e Di ffe r e n c e Program . Deri vati on of M e l l or ' s Formul a .
1 6 1 1 6 1 1 6 2
1 6 3 1 6 4 1 6 5 1 6 5 1 6 7 1 69 1 7 2
1 8 5 1 94
204
2 1 7
2 2 2
6 7
I nve s t i gati on of Changing Ambi ent T em perature .
I nve s t i gati on o f Non-Uni form I n i t i al Temperature .
2 2 5
2 3 1
LI ST OF FI GURES
4 . 1 Schemati c outline o f the experim ental plat e fre e z er .
4 . 2 Test s l ab s .
4 . 3 Typi c al t emperature/ tim e profi l e s for
therm o c oupl e s placed at , or near , the surfac e o f a fre ezi�g slab .
4 . 4 Schem ati c outline o f the experim ental l i quid immers i on fre e z er .
4 . 5 The s arri?l e o s c i � lator us ed in liquid imm ersi on fre e z ing experiments
4 . 6 Schem at i c outline o f th e sy stem used to o s ci l l ate cylinders in the liquid imm ersi on fre e z er
4 . 7 Arrangement o f the polystyrene foam c aps and therm o c oupl e l e ad s for cylinders .
4 . 8 Insert i on o f therm o c oupl e s in the sphere s .
4 . 9 Schemati c outline of the experimental air blast free z er .
4 . 1 0 Typi c al fini t e di fferen c e re sults for fre e z ing of a sph ere .
4 . 1 1 Typi c al experimental r e sul ts for air blast free z ing o f a cylind er .
4 . 1 2 At tachment o f l i d s t o the plastic boxe s .
4 . 1 3 Typi c al polypropy l en e c o nt ainers used in the experim ental inve stigat i on into freezing o f rectangular bri ck s .
3 6 3 7
4 6
47
48
4 9
5 0 5 3
5 4
6 1
6 2 6 3
6 4
5 . 1
5 . 2
5 . 3
5 . 4
Typi c al t emperature curve s for fre e zing of a slab o f K arl sruhe t e s t sub s tanc e ( Run F 1 7 ) .
Typi c al t em perature curves for fre e zing of a slab o f K arl sruhe t e st sub s tance ( Run F 1 4 ) .
Typi c al t emperature curve s for fre e zing o f a cylinder o f Karl sruh e t e st sub s tan c e ( Run C3 ) .
Typi c al t emperature curve s for fre ezing o f a s phere o f K arl sruhe test subs tanc e ( Run 8 1 ) .
5 . 5 Typi c al temperature curves for fre ezing o f a rectangular bri ck o f K arl sruhe t e s t
sub s t an c e ( Run B7 2 ) . 5 . 6
5 . 7
Typi c al temperature curve s for fr e e z in g o f a rectangul ar bri ck o f Karlsruhe t e st
substan c e ( Run B5 5 ) .
Typi c al t emperature curves for freezing o f a rectangular bri ck o f Karl sruhe t e st
sub s t an c e ( Run B4 3 ) .
6 . 1 Therm al pro perty curves u s ed t o approximat e
8 6
8 7
88
89
90
9 1
9 2
fre e zing at a uniQue phas e change t emperatur e . 98
6 . 2 The fin i t e di fference gri d at the surfac e o f a fre e z ing slab .
6 . 3 Thermal conductivi ty dat a .
6 . 4 Apparent spe ci fi c heat c ap ac i ty data for K arlsruhe test substanc e .
6 . 5 Appare nt s p e c i fi c heat c apacity data for minced l ean b e e f .
6 . 6 Apparent spe cific heat c apacity data for mashed p otat o .
98 9 9
9 9
1 00
1 00
6 . 7 Frequen cy diagram o f the p erc entage di fferen c e s between experimental fre e zing tim e s for
slabs , and tim e s cal cul at e d by finite differen c e s .
6 . 8 Typi cal t emperature and therm al c onduc tivi ty profil e s through a fre e z in g s phere or cylind er shov1ing the effect of a l i n e ar approximation
1 04
o f the thermal c onductivi ty . 1 09
6 . 9 Frequency d i agr·am o f the p erc entage di fferen c e s betwe en experimental fre e z ing tim e s for
cyl ind ers , and tim e s cal culated by fin i t e differen c e s .
6 . 1 0 Frequenc y d iagram of the p erc entage di fferenc e s betwe en experim en tal fre e z ing tim e s for
spher e s , and tim e s calcul ated by fini t e di fferen c e s .
7 . 1 Fre quency di agram of the perc entage d i fferenc e s betw e en experimental fre e zing times for s lab s , and t i m e s c al cul ated by s o luti ons with the first kind o f b oundary c ondi ti on .
7 . 2 Fre quency di agram of the p ercentage di fferen c e s b e tween experimental fre e zing tim es for slab s , and tim e s cal culated by s ol uti ons with the third k ind of b oundary c ondi tion .
7 . 3 Schemat i c di agram showing the heat t o be rem oved in fre e zing of s l ab s .
7 . 4 Frequency d iagram o f the p er c entage differenc e s b etwe en experimental fre e zing t im e s for slab s , and t im e s c alcul ated by empiri c al m odifi c at i on s .and formulae .
1 1 0
1 1 0
1 2 5
1 2 5
1 26
1 27
7 . 5 Frequen cy di agram o f the perc entage d i fference s between experim en tal fre e z ing tim e s for
cylind ers , and tim e s calculated by vari ous m ethod s .
7 . 6 Frequency di agram o f the p erc entage d i fferen c e s b etwe en experim ental fre e z in g tim e s for
spher e s , and tim e s cal cul at ed by vari ous method s .
7 . 7 Plo t o f the ave�age predi c t i on error
(wh en comparing calcul at ed fre e z ing tim e s t o
experim ental re sul t s for r e c tangular bri cks ) versus number o f e quival ent heat trans fer dimen s i on s .
8 . 1 Fre1uency di agram o f the p er c entage di fferen c e s betwe en experimental fre e z in g tim e s , and
cal cul ated fre e zing time s .
A 5 . 1 Schemat i c repre s entati on o f typi c al t emperature profi l e s within a free zing m at erial where
fre e z in g o ccur s at a uni qu e phas e change te�perature T f .
A6 . 1 Ambient t emperature profi l e s .
1 33
1 33
1 40
1 46
2 23
2 26
LI ST OF TABLES
5 . 1 Typi cal c on di t i on s in food fre e z ers .
5 . 2 De sign o f th e fact orial experiment for
inve stigat i on of the fre ezing t im e s of s l abs o f Karl sruhe test subs tance .
5 . 3 Experim en t al data for fre e z ing of slabs o f Karl sruhe t e st sub s t ance .
5 . 4 Experim en tal data for fre e z ing of min c ed lean beef ( M ) and mashed po tato ( P ) in slab s .
5 . 5 Exp erimental data for fre e z ing of cylind ers o f Karlsruhe test substan c e .
5 . 6 Exp erimental data for fre e zing of spheres of Karlsruh e t e s t substance .
5 . 7 Experimental d ata for fre e z ing of r e c t angul ar bricks o f Karl sruh e t e s t substance .
6 . 1 Compari s on o f resul t s from the thre e
dimen si on al program t o a known analyt i c al soluti on for c o oling o f a cube .
6 . 2 R e sul t s from the fini te d i fference s imul at i on of the fre e zing o f rectangul ar bri ck s .
7 . 1 Thermal data for fre e z ing food materi al s .
7 .2 Compar i s on o f experimental freezing tim e s with t i m e s calculated b y Neumann ' s m e th o d .
7 . 3 Pre d i c t i on of fre e zing t im e s o f slabs o f min c e d lean b e e f and mashed potat o by e quati on s 7 . 4 and 7 . 5 .
7 6
7 7
7 8
80
8 1
8 2
8 3
1 1 6
1 1 7 1 2 2
1 24
1 3 2
7 . 4 M ean s and 9 5% confi d en c e lim i t s for th e applicabil i ty of e quat i on s 7 . 1 9 t o 7 . 27 t o the experimental dat a .
8 . 1 Experim ental and c al cul ated fre e zing tim e data for all shapes .
8 . 2 Means and standard d eviati ons o f the perc entag e di fferen c e s between experimen tal fre e zing
times , and �im e s cal c ulat e d from ( a ) the three-level fin�te di fferen c e s chem e , ( b ) e quations 7 . 1 9 to 7 . 27 .
8 . 3 C ompari s on of m etho d s for pred i c ti on o f food freezing t im e s .
A6 . 1 C ondi ti o n s used for the inve stigat ion o f the e ffect o f changing ambi en t t emperature on fre ezi.::1g tim e .
A6 . 2 Resul t s o f the fini t e d i fferen c e simulation o f fre e z ing of a s l ab sub j e c t t o a cycl ing ambi ent t emperature .
A6 . 3 Resul t s o f the fin i t e di fferen c e simul ation of fre e zing o f a slab sub j e c t to an exponential fall
L'1runbi ent temperature .
A7 . 1 R e sul t s from the finite d i fferen ce simulat i on of fre e z ing of a slab o f K arlsruhe t e s t
1 44
1 5 1
1 58
1 5 9
2 28
2 2 9
230