• Tidak ada hasil yang ditemukan

23| ewikvj †evW© Ñ 2017

IqvjUb †Kv¤úvwb wj. wewfbœ ai‡bi wUwf, wd«R I Ab¨vb¨ B‡jKUªwb· mvgMÖx Drcv`bKvix cÖwZôvb| GwU ¯^ímg‡qi g‡a¨ †`‡k mycwiwPwZ jvf K‡i‡Q| GwU †µZv‡`i iæwP I cQ›` Abyhvqx wewfbœ g‡W‡ji cY¨ mvgMÖx Drcv`b K‡i| ZvQvov cÖwZôvbwU m‡e©vËg weµ‡qvËi †mev wbwðZ K‡i| Gi gva¨‡g GwU h‡_ó mybvg AR©‡b mÿg n‡q‡Q| mKj †kÖwYi †µZv‡`i Kv‡Q cÖwZôvbwUi Drcvw`Z mvgMÖx e¨vcK RbwcÖqZv cvIqvq Zv we‡ePbvq †i‡L c‡Y¨i g~j¨ wba©viY K‡i‡Q| cÖwZôvbwU C`-Dj-Avhnv Dcj‡ÿ 10% Qvo †NvlYv Ki‡Q| hv‡Z K‡i GwU Gi cÖwZ‡hvMx‡`i mv‡_ †gvevwejv K‡i †ewk wewµ Ki‡Z mÿg n‡Z cv‡i|

K. †mev cY¨ Kx?

L. DËg µq weµ‡qi A‡a©K Ñ e¨vL¨v K‡iv|

M. DÏxc‡K IqvjUb †Kv¤úvwb wj. †Kvb c×wZ‡Z c‡Y¨i g~j¨ wba©viY K‡i| e¨vL¨v K‡iv|

N. DÏxc‡K ÔIqvjUbÕ †Kv¤úvwb wj. KZ…©K C`-Dj-Avhnv Dcj‡ÿ c‡Y¨i g~j¨ Qvo †`Iqv cÖwZ‡hvwMZv †gvKvwejvq KZUzKz Kvh©Ki f~wgKv ivL‡e e‡j Zzwg g‡b K‡iv? Dˇii mc‡ÿ hyw³ `vI|

M †Kv¤úvwbwU f¨vjy wfwËK g~j¨ wba©viY K‡i|

N weµq cÖmv‡ii msÁv w`‡q cÖwZ‡hvwMZv ‡gvKv‡ejvq Gi f~wgKv Av‡jvPbv Ki‡Z n‡e|

--- welq : cwimsL¨vb wØZxq cÎ

m„Rbkxj cÖkœ

2q Aa¨vq (‰`e PjK I m¤¢vebv web¨vm)

## ˆ`e PjK : †h Pj‡Ki cÖwZwU gv‡bi GKwU wbw`©ó m¤¢vebv _v‡K, Zv‡K ˆ`e PjK e‡j|

A_©vr m¤¢vebvhy³ PjK‡K ˆ`e PjK e‡j|

g‡b Kwi, †Kv‡bv ˆ`e PjK x Gi n msL¨K gvb x1, x2 , x3 , … … … xn hv‡`i m¤¢vebv h_vµ‡g P(x1) , P(x2) , P(x3) , … … … P(xn) †hLv‡b, P(xi) = 1.

ˆ`e PjK `yÕwU kZ© †g‡b P‡j : (i) P(x) ≥ 0 (ii) P(x) = 1.

ˆ`e PjK `yB cÖKvi| h_v : (i) wew”Qbœ ˆ`e PjK (ii) Awew”Qbœ ˆ`e PjK

## m¤¢vebv A‡cÿK : †Kv‡bv wew”Qbœ ˆ`e Pj‡Ki m¤¢vebv †h MvwYwZK m~‡Îi mvnv‡h¨ wbY©q Kiv nq Zv‡K m¤¢vebv A‡cÿK e‡j|

Bnv‡K P(x) Øviv cÖKvk Kiv nq| m¤¢vebv A‡cÿK `yÕwU kZ© †g‡b P‡j : (i) P(x) ≥ 0 (ii) P(x) = 1.

## m¤¢vebv web¨vm : †Kv‡bv wew”Qbœ ˆ`e Pj‡Ki cÖwZwU gvb Ges Zv‡`i m¤¢vebv‡K †h mviYx†Z Dc¯’vcb Kiv nq Zv‡K m¤¢vebv web¨vm e‡j|

g‡b Kwi, †Kv‡bv ˆ`e PjK x Gi n msL¨K gvb x1, x2 , x3 , … … … xn hv‡`i m¤¢vebv h_vµ‡g P(x1) , P(x2) , P(x3) , … … … P(xn) †hLv‡b, P(xi) = 1.

m¤¢vebv web¨vm `yÕwU kZ© †g‡b P‡j : (i) P(x) ≥ 0 (ii) P(x) = 1.

ˆ`e PjK x Gi m¤¢vebv web¨vm wb¤œiƒc :

## m¤¢vebv NbZ¡ A‡cÿK : †Kv‡bv Awew”Qbœ ˆ`e Pj‡Ki gvb GKwU wbw`©ó mxgvi g‡a¨ _vKvi m¤¢vebv †h MvwYwZK m~‡Îi mvnv‡h¨

wbY©q Kiv nq Zv‡K m¤¢vebv NbZ¡ A‡cÿK e‡j| Bnv‡K f(x) Øviv cÖKvk Kiv nq|

x x1 x2 x3 … … xn

P(x) P(x1) P(x2) P(x3) … … P(xn)

m¤¢vebv NbZ¡ A‡cÿK `yÕwU kZ© †g‡b P‡j : (i) f(x) ≥ 0 (ii) ∫ f(x)dxab = 1.

## web¨vm A‡cÿK : †Kv‡bv ˆ`e Pj‡Ki me©wb¤œ gvb n‡Z †Kv‡bv wbw`©ó gvb ch©šÍ mKj m¤¢vebvi mgwó wbiæcYKvix dvskb‡K web¨vm dvskb ev web¨vm A‡cÿK e‡j| Bnv‡K F(x) Øviv cÖKvk Kiv nq|

web¨vm A‡cÿ‡Ki ag© ev ˆewkó¨ :

(i) a < b n‡j P(a ≤ x ≤ b) = F(b) – F(a)

(ii) ‰`e Pj‡Ki `ywU gvb a ≤ b Ges 0 ≤ F(x) ≤ 1 nq, Z‡e F(a) ≤ F(b) n‡e|

(iii) F(x) cwimxgvi ev‡g k~b¨ Ges Wv‡b GK nq| A_©vr F(-∞) = 0 I F(∞) = 1.

(iv) x GKwU wewPQbœ ˆ`e PjK Ges xi-1 < xi n‡j P(xi) = F(xi) – F(xi-1) (v) x GKwU wewPQbœ ˆ`e PjK Ges me©‡kl gvb xn n‡j P(xn) = 1 .

## hy³ m¤¢vebv A‡cÿK : `ywU wew”Qbœ ˆ`e Pj‡Ki m¤¢vebv †h MvwYwZK m~‡Îi mvnv‡h¨ wbY©q Kiv nq Zv‡K hy³ m¤¢vebv A‡cÿK e‡j| Bnv‡K P(xi , yj ) Øviv cÖKvk Kiv nq| hy³ m¤¢vebv A‡cÿK `yÕwU kZ© †g‡b P‡j : (i) P(xi , yj) ≥ 0 (ii)  P(xi, yj) = 1.

mgm¨v (1) : ˆ`e PjK x Gi m¤¢vebv web¨vm wb¤œiyc :

(i) k Gi gvb wbY©q Ki|

(ii) hw` y = 3x + 2 nq Z‡e y Gi m¤¢vebv web¨vm wbY©q Ki|

(iii) P(-1≤ x ≤ 2) , P( -1< x ≤ 2) , P( -1 < x < 2) , P( 0 ≤ x < 4) wbY©q Ki|

(iv) web¨vm A‡cÿK wbY©q Ki Ges P( 0< x ≤ 2) I F(2) – F(0) Gi g‡a¨ Zyjbv Ki|

mgvavb : †`qv Av‡Q, ˆ`e PjK x Gi m¤¢vebv web¨vm wb¤œiƒc :

(i) k Gi gvb wbY©q:

Avgiv Rvwb, m¤¢vebv web¨v‡mi ag©vbymv‡i,  P(x) = 1

 0.2 + 0.12 + 0.1 + k + 0.25 + 0.15 = 1  k + 0.82 = 1

 k = 1- 0.82  k = 0.18

GLb, k Gi gvb ewm‡q ˆ`e PjK x Gi m¤¢vebv web¨vm n‡e wb¤œiyc :

(ii) †`qv Av‡Q, y = 3x + 2

x = -3 n‡j , y = 3(-3) + 2 = -9 + 2 = -7 Ges P(y) = 0.2 x = -1 n‡j , y = 3(-1) + 2 = -3 + 2 = -1 Ges P(y) = 0.12 x = 0 n‡j , y = 3(0) + 2 = 0 + 2 = 2 Ges P(y) = 0.1 x = 1 n‡j , y = 3(1) + 2 = 3 + 2 = 5 Ges P(y) = 0.18 x = 2 n‡j , y = 3(2) + 2 = 6 + 2 = 8 Ges P(y) = 0.25

x = 4 n‡j , y = 3(4) + 2 = 12 + 2 = 14 Ges P(y) = 0.15 ˆ`e PjK y Gi m¤¢vebv web¨vm wb¤œiyc :

x -3 -1 0 1 2 4

P(x) 0.2 0.12 0.1 K 0.25 0.15

x -3 -1 0 1 2 4

P(x) 0.2 0.12 0.1 K 0.25 0.15

x -3 -1 0 1 2 4

P(x) 0.2 0.12 0.1 0.18 0.25 0.15

(iii) ■ P(-1≤ x ≤ 2) = P(x= -1) + P(x=0) + P(x=1) + P(x= 2) = 0.12 + 0.1 + 0.18 + 0.25 = 0.65 ■ P(-1< x ≤ 2) = P(x=0) + P(x=1) + P(x= 2)

= 0.1 + 0.18 + 0.25 = 0.53 ■ P(-1< x < 2) = P(x=0) + P(x=1)

= 0.1 + 0.18 = 0.28

■ P( 0 ≤ x < 4) = P(x=0) + P(x=1) + P(x= 2) = 0.1 + 0.18 + 0.25 = 0.53 (iv) ˆ`e PjK x Gi web¨vm A‡cÿK wbY©q :

GLv‡b P( 0< x ≤ 2) = P(x = 1) + P(x = 2) = 0.18 + 0.25 = 0.43

Ges F(2) – F(0) = 0.85- 0.42 = 0.43

 P( 0< x ≤ 2) = F(2) – F(0)

3q Aa¨vq (MvwYwZK cÖZ¨vkv ) ## ˆ`e PjK : m¤¢vebvhy³ PjK‡K ˆ`e PjK e‡j|

## MvwYwZK cÖZ¨vkv : †Kv‡bv ˆ`e PjK Ges Zvi wbR wbR m¤¢vebvi ¸Yd‡ji mgwó‡K H ˆ`e Pj‡Ki MvwYwZK cÖZ¨vkv e‡j|

g‡b Kwi, †Kv‡bv ˆ`e PjK x Gi n msL¨K gvb x1, x2 , x3 , … … … xn hv‡`i m¤¢vebv h_vµ‡g P(x1) , P(x2) , P(x3) , … … … P(xn) †hLv‡b, P(xi) = 1.

ˆ`e PjK x Gi MvwYwZK cÖZ¨vkv E(x) n‡j,

E(x) = x1P(x1) + x2P(x2) + x3P(x3) + … … … + xnP(xn) =  xiP(xi)

## MvwYwZK cÖZ¨vkvi ag©mg~n :

(i) †Kv‡bv aªæe‡Ki MvwYwZK cÖZ¨vkv aªæeKB nq| A_©vr , a GKwU aªæeK n‡j, E(a) = a (ii) x GKwU ‰`e PjK Ges a GKwU aªæeK n‡j, E(ax) = a E(x).

(iii) x GKwU ‰`e PjK Ges a GKwU aªæeK n‡j, E(x + a) = E(x) + a (iv) x GKwU ‰`e PjK Ges a GKwU aªæeK n‡j, E(x  a) = E(x)  a

(v) x GKwU ‰`e PjK Ges a I b `yÕwU aªæeK n‡j, E(ax + b) = a E(x) + b (vi) x GKwU ‰`e PjK Ges a I b `yÕwU aªæeK n‡j, E(ax  b) = a E(x)  b (vii) x I y `yÕwU ‰`e PjK n‡j, E(x + y) = E(x) + E(y)

(viii) x I y `yÕwU ¯^vaxb ‰`e PjK n‡j, E(x y) = E(x) E(y)

†QvU cÖgvYmg~n :

 (i) †Kv‡bv aªæe‡Ki MvwYwZK cÖZ¨vkv aªæeKB nq| A_©vr , a GKwU aªæeK n‡j, E(a) = a  cÖgvY : g‡b Kwi, †Kv‡bv ˆ`e PjK x Gi n msL¨K gvb x1, x2 , x3 , … … … xn hv‡`i

y -7 -1 2 5 8 14

P(y) 0.2 0.12 0.1 0.18 0.25 0.15

x -3 -1 0 1 2 4

P(x) 0.2 0.12 0.1 0.18 0.25 0.15

F(x) 0.2 0.32 0.42 0.60 0.85 1

m¤¢vebv h_vµ‡g P(x1) , P(x2) , P(x3) , … … … , P(xn) †hLv‡b,  P(xi) = 1 Ges a GKwU aªæeK|

Avgiv Rvwb, ˆ`e PjK x Gi MvwYwZK cÖZ¨vkv , E(x) =  xi P(xi)

GLb , E(a) =  a P(xi) = a  P(xi) = a  1 = a [  P(xi) = 1 ]  E(a) = a (Proved)

 (ii) x GKwU ‰`e PjK Ges a GKwU aªæeK n‡j, E(a x) = a E(x).

cÖgvY: g‡b Kwi, †Kv‡bv ˆ`e PjK x Gi n msL¨K gvb x1, x2 , x3 , … … … xn hv‡`i m¤¢vebv h_vµ‡g P(x1) , P(x2) , P(x3) , … … … , P(xn) †hLv‡b,  P(xi) = 1 Ges a GKwU aªæeK|

Avgiv Rvwb, ˆ`e PjK x Gi MvwYwZK cÖZ¨vkv , E(x) =  xi P(xi) GLb , E(a x) =  a xi P(xi)

= a  xi P(xi) = a E(x)  E(a x) = a E(x) (Proved)

 (iii) x GKwU ‰`e PjK Ges a GKwU aªæeK n‡j, E(x + a ) = E(x) + a

cÖgvY: g‡b Kwi, †Kv‡bv ˆ`e PjK x Gi n msL¨K gvb x1, x2 , x3 , … … … xn hv‡`i m¤¢vebv h_vµ‡g P(x1) , P(x2) , P(x3) , … … … , P(xn) †hLv‡b,  P(xi) = 1Ges a GKwU aªæeK|

Avgiv Rvwb, ˆ`e PjK x Gi MvwYwZK cÖZ¨vkv , E(x) =  xi P(xi) GLb , E(x + a) =  (xi + a ) P(xi)

=  xi P(xi) +  a P(xi)

=  xi P(xi) + a  P(xi) = E(x) + a  1 = E(x) + a  E (x + a) = E(x) + a (Proved)

 (iv) x GKwU ‰`e PjK Ges a I b `yÕwU aªæeK n‡j, E(a x + b) = a E(x) + b

cÖgvY: g‡b Kwi, †Kv‡bv ˆ`e PjK x Gi n msL¨K gvb x1, x2 , x3 , … … … xn hv‡`i m¤¢vebv h_vµ‡g P(x1) , P(x2) , P(x3) , … … … , P(xn) †hLv‡b,  P(xi) = 1 Ges a I b `yÕwU aªæeK|

Avgiv Rvwb, ˆ`e PjK x Gi MvwYwZK cÖZ¨vkv , E(x) =  xi P(xi) GLb , E(a x + b) =  (a xi + b ) P(xi)

=  a xi P(xi) +  b P(xi) = a  xi P(xi) + b  P(xi)

= a E(x) + b  1 = a E(x) + b  E (ax + b) = a E(x) + b (Proved)

## MvwYwZK Mo I MvwYwZK cÖZ¨vkvi g‡a¨ cv_©K¨ :

MvwYwZK Mo MvwYwZK cªZ¨vkv

1) Pj‡Ki gvb ¸‡jvi mgwó‡K ‡gvU Z_¨ msL¨v Øviv fvM Ki‡j †h gvb cvIqv hvq Zv‡K MvwYwZK Mo e‡j|

†Kv‡bv ˆ`e Pj‡Ki cÖwZwU gvb I Zvi wbR wbR m¤¢vebvi ¸Yd‡ji mgwó‡K H ˆ`e Pj‡Ki MvwYwZK cÖZ¨vkv e‡j|

2) Bnv‡K x ̅ Øviv cÖKvk Kiv nq| Bnv‡K E(x) Øviv cÖKvk Kiv nq|

3) MvwYwZK Mo , x ̅ = ∑ fixi

N MvwYwZK cÖZ¨vkv , E(x) =  xi P(xi) 4) Pj‡Ki cÖwZwU gv‡bi †Kv‡bv m¤¢vebv _v‡K bv| ˆ`e Pj‡Ki cÖwZwU gv‡bi m¤¢vebv _v‡K|

5) MYmsL¨v web¨vm n‡Z MvwYwZK Mo wbY©q Kiv nq| m¤¢vebv web¨vm n‡Z MvwYvZK cÖZ¨vkv wbY©q Kiv nq|

## ˆ`e Pj‡Ki †f`vsK : †Kv‡bv ˆ`e PjK Ges Zvi cÖZ¨vwkZ gv‡bi we‡qvMd‡ji e‡M©i cÖZ¨vwkZ gvb‡K H ˆ`e Pj‡Ki †f`vsK e‡j|

g‡b Kwi , x GKwU ˆ`e PjK hvi MvwYwZK cÖZ¨vkv E(x) myZivs x ‰`e Pj‡Ki †f`vsK , V(x) = E{ x − E(x)}2 = E(x2)  {E(x)}2

## †f`vs‡Ki ag©mg~n :

(i) †Kv‡bv aªæe‡Ki ‡f`vsK k~b¨ nq| A_©vr , a GKwU aªæeK n‡j, V(a) = 0 (ii) x GKwU ‰`e PjK Ges a GKwU aªæeK n‡j, V(ax) = a2 V(x).

(iii) x GKwU ‰`e PjK Ges a GKwU aªæeK n‡j, V(x + a) = V(x) (iv) x GKwU ‰`e PjK Ges a GKwU aªæeK n‡j, V(x  a) = V(x)

(v) x GKwU ‰`e PjK Ges a I b `yÕwU aªæeK n‡j, V(ax + b) = a2 V(x) (vi) x GKwU ‰`e PjK Ges a I b `yÕwU aªæeK n‡j, V(ax  b) = a2 V(x) (vii) x I y `yÕwU ¯^vaxb ‰`e PjK n‡j, V(x + y) = V(x) + V(y)

(viii) x I y `yÕwU ¯^vaxb ‰`e PjK n‡j, V(x  y) = V(x) + V(y)

†QvU cÖgvYmg~n :

 (i) †Kv‡bv aªæe‡Ki ‡f`vsK k~b¨ nq| A_©vr , a GKwU aªæeK n‡j, V(a) = 0

cÖgvY : g‡b Kwi, x GKwU ˆ`e PjK hvi MvwYwZK cÖZ¨vkv E(x) Ges a GKwU aªæeK|

†f`vs‡Ki msÁvbymv‡i , V(x) = E{ x − E(x)}2 Ges MvwYwZK cÖZ¨vkvi ag©vbymv‡i , E(a) = a

GLb , V(a) = E{ a − E(a)}2

= E { a  a }2 [ E(a) = a ] = E { 0 }2 = E { 0 } = 0

 V(a) = 0 (Proved)

 (ii) x GKwU ‰`e PjK Ges a GKwU aªæeK n‡j, V(ax) = a2 V(x).

cÖgvY : g‡b Kwi, x GKwU ˆ`e PjK hvi MvwYwZK cÖZ¨vkv E(x) Ges a GKwU aªæeK|

†f`vs‡Ki msÁvbymv‡i, V(x) = E{ x − E(x)}2 Ges MvwYwZK cÖZ¨vkvi ag©vbymv‡i, E(ax) = a E(x)

GLb , V(ax) = E{ ax − E(ax)}2

= E{ ax  a E(x)}2 [ E(ax) = a E(x) ] = E[ a { x − E(x) }]2 = E[a2 { x − E(x) }2 ] = a2 E{ x − E(x)}2 = a2 V(x)

 V(ax) = a2 V(x) (Proved)

 (iii) x GKwU ‰`e PjK Ges a GKwU aªæeK n‡j, V(x + a ) = V(x)

cÖgvY : g‡b Kwi, x GKwU ˆ`e PjK hvi MvwYwZK cÖZ¨vkv E(x) Ges a GKwU aªæeK|

†f`vs‡Ki msÁvbymv‡i , V(x) = E{ x − E(x)}2 Ges MvwYwZK cÖZ¨vkvi ag©vbymv‡i , E(x + a) = E(x) + a

GLb , V(x + a) = E{(x + a) − E(x + a)}2

= E {x + a  E(x) − a }2 [E(x + a) = E(x) +a ] = E {x  E(x)}2 = V (x)

 V(x + a ) = V(x) (Proved)

 (iv) x GKwU ‰`e PjK Ges a I b `yÕwU aªæeK n‡j, V(ax + b) = a2 V(x)

cÖgvY : g‡b Kwi, x GKwU ˆ`e PjK hvi MvwYwZK cÖZ¨vkv E(x) Ges a I b `yÕwU aªæeK|

†f`vs‡Ki msÁvbymv‡i , V(x) = E{ x − E(x)}2

Ges MvwYwZK cÖZ¨vkvi ag©vbymv‡i , E(ax + b) = a E(x) + b GLb , V(ax + b) = E{( ax + b ) − E(ax + b)}2

= E{ ax + b  a E(x) − b}2 [E(ax +b) = a E(x) + b]

= E[ a { x − E(x) }]2 = E[a2 { x − E(x) }2 ] = a2 E{ x − E(x)}2 = a2 V(x)

 V(ax + b) = a2V(x) (Proved)

 (v) x GKwU ‰`e PjK Ges a I b `yÕwU aªæeK n‡j, V(ax  b) = a2 V(x)

cÖgvY : g‡b Kwi, x GKwU ˆ`e PjK hvi MvwYwZK cÖZ¨vkv E(x) Ges a I b `yÕwU aªæeK|

†f`vs‡Ki msÁvbymv‡i, V(x) = E{ x − E(x)}2

Ges MvwYwZK cÖZ¨vkvi ag©vbymv‡i, E(ax  b) = a E(x)  b GLb, V(ax + b) = E{( ax + b ) − E(ax + b)}2

= E{ ax  b  a E(x) + b}2 [E(ax b) = a E(x)  b]

= E[ a { x − E(x) }]2 = E[a2 { x − E(x) }2 ] = a2 E{ x − E(x)}2 = a2 V(x)

 V(ax  b) = a2V(x) (Proved)

 (v) x GKwU ‰`e PjK n‡j, E( x2 ) ≥ { E(x) }2

cÖgvY : g‡b Kwi, x GKwU ˆ`e PjK hvi MvwYwZK cÖZ¨vkv E(x) Ges a I b `yÕwU aªæeK|

†f`vs‡Ki msÁvbymv‡i , V(x) = E{ x − E(x)}2 †h‡nZz †f`vs‡Ki gvb FYvZ¥K n‡Z cv‡i bv , myZivs V(x) ≥ 0

 E{ x − E(x)}2 ≥ 0

 E [ x2  2 x E(x) + {E(x)}2] ≥ 0  E ( x2 )  2 E(x) E(x) + {E(x)}2 ≥ 0  E ( x2 )  2{E(x)}2 + {E(x)}2 ≥ 0  E ( x2 )  {E(x)}2 ≥ 0

 E( x2 ) ≥ { E(x) }2 (Proved )

MvwYwZK mgm¨vejx :

 mgm¨v (1) : ivBmv GKwU wbi‡cÿ gy`ªv 3 evi wb‡ÿc Ki‡jv | Dc‡ii wc‡V cÖvß †n‡Wi msL¨vi PjK x n‡j ,

(i) ‰`e PjK x Gi Mo I †f`vsK wbY©q Ki

(ii) ivBmv ej‡jv , E(x3 - 5 x2 + 3x - 10 ) Gi gvb FYvZ¥K - gšÍe¨ Ki|

mgvavb : GKwU wbi‡cÿ gy`ªv 3 evi wb‡ÿ‡ci bgybv‡ÿÎ :

S = { HHH, HHT, HTH, THH, HTT, THT, TTH, TTT } bgybv‡ÿ‡Îi †gvU Dcv`vb msL¨v, n(S) = 8

Dc‡ii wc‡V cÖvß †n‡Wi msL¨vi PjK x n‡j , x Gi gvbmg~n n‡e 0, 1, 2, 3.

GLb, ˆ`e PjK x Gi m¤¢vebv web¨vm n‡e wb¤œiyc :

x 0 1 2 3

P(x) 1

8

3 8

3 8

1 8

(i) ˆ`e PjK x Gi Mo , E(x) =  x P(x) = 0  1

8 + 1  3

8 + 2  3

8 + 3  1

8 = 0 + 3

8+ 6

8+ 3

8 = 12

8 = 3

2 = 1.5

(ii) ˆ`e PjK x Gi ‡f`vsK , V(x) = E(x2) - { E(x)}2 GLv‡b , E(x2) =  x2 P(x)

= (0)21

8 + (1)23

8 + (2)23

8 + (3)21

8 = 0 + 3

8 + 12

8 + 9

8 = 3 GLb, †f`vsK V(x) = E(x2) - { E(x)}2

= 3 - (1.5)2 = 3 - 2.25 = 0.75 (iii) GLv‡b , E(x) = 1.5 Ges E(x2) = 3

E(x3) =  x3 P(x) = (0)31

8 + (1)33

8 + (2)33

8 + (3)31

8 = 0 + 3

8 + 24

8 + 27

8 = 54

8 = 6.75 GLb, E(x3 - 5 x2 + 3x - 10 ) = E(x3) - 5 E(x2) + 3 E(x) - 10 = 6.75 - 5  3 + 3  1.5 - 10 = 6.75 - 15 + 4.5 - 10 = - 13.75 , hv FYvZ¥K msL¨v|

myZivs ivBmvi gšÍe¨ mwVK|

mgm¨v (2) : ˆ`e PjK x Gi m¤¢vebv web¨vm wb¤œiyc :

(i) k Gi gvb wbY©q Ki|

(ii) ˆ`e PjK x Gi Mo I †f`vsK wbY©q Ki|

(iii) hw` y = 3x + 2 nq Z‡e y Gi m¤¢vebv web¨vm wbY©q Ki|

(iv) E(y) I V(y) Gi gvb wbY©q Ki|

mgvavb : †`qv Av‡Q, ˆ`e PjK x Gi m¤¢vebv web¨vm wb¤œiyc :

(i) k Gi gvb wbY©q:

Avgiv Rvwb, m¤¢vebv web¨v‡mi ag©vbymv‡i,  P(x) = 1

 0.2 + 0.12 + 0.1 + k + 0.25 + 0.15 = 1  k + 0.82 = 1

 k = 1- 0.82  k = 0.18

GLb, k Gi gvb ewm‡q ˆ`e PjK x Gi m¤¢vebv web¨vm n‡e wb¤œiyc :

x -3 -1 0 1 2 4

P(x) 0.2 0.12 0.1 k 0.25 0.15

x -3 -1 0 1 2 4

P(x) 0.2 0.12 0.1 k 0.25 0.15

x -3 -1 0 1 2 4

P(x) 0.2 0.12 0.1 0.18 0.25 0.15

(ii) ˆ`e PjK x Gi Mo wbY©q : Mo , E(x) =  x P(x)

= (-3)0.2 + (-1)0.12 + 00.1 + 10.18 + 20.25 + 40.15 = - 0.6 - 0.12 + 0 + 0.18 + 0.5 + 0.6 = 0.56

ˆ`e PjK x Gi ‡f`vsK wbY©q :

†f`vsK , V(x) = E (x2) - {E(x)}2 GLv‡b , E(x) = 0.56

Ges E(x2) =  x2 P(x)

= (-3)20.2 + (-1)20.12 + 020.1 + 120.18 + 220.25 + 420.15 = 1.8 + 0.12 + 0 + 0.18 + 1 + 2.4 = 5.5

GLb, V(x) = E (x2) - {E(x)}2

= 5.5 - (0.56)2 = 5.5 - 0.3136 = 5.1864

(iii) †`qv Av‡Q, y = 3x + 2

x = -3 n‡j , y = 3(-3) + 2 = -9 + 2 = -7 Ges P(y) = 0.2 x = -1 n‡j , y = 3(-1) + 2 = -3 + 2 = -1 Ges P(y) = 0.12 x = 0 n‡j , y = 3(0) + 2 = 0 + 2 = 2 Ges P(y) = 0.1 x = 1 n‡j , y = 3(1) + 2 = 3 + 2 = 5 Ges P(y) = 0.18 x = 2 n‡j , y = 3(2) + 2 = 6 + 2 = 8 Ges P(y) = 0.25

x = 4 n‡j , y = 3(4) + 2 = 12 + 2 = 14 Ges P(y) = 0.15

ˆ`e PjK y Gi m¤¢vebv web¨vm wb¤œiyc :

(iv) E(y) I V(y) Gi gvb wbY©q : †`qv Av‡Q, y = 3x + 2

 E(y) = E(3x + 2)

= 3 E(x) + 2 = 3  0.56 +2 = 1.68 + 2 = 3.68

Avevi, y = 3x + 2

 V(y) = V(3x + 2)

= 32 V(x) = 9  5.1864 = 46.6776  mgm¨v (3) : ˆ`e PjK x Gi m¤¢vebv A‡cÿK wb¤œiyc :

P(x) = 4− |5−x|

k , x = 2, 3, 4, … … … , 8

(i) k Gi gvb wbY©q Ki|

(ii) ˆ`e PjK x Gi Mo I †f`vsK wbY©q Ki|

(iii) hw` y = 2x - 3 nq Z‡e E(y) I V(y) Gi gvb wbY©q Ki|

 mgvavb : †`qv Av‡Q, ˆ`e PjK x Gi m¤¢vebv A‡cÿK wb¤œiyc : P(x) = 4− |5−x|

k , x = 2, 3, 4, … … … , 8

y -7 -1 2 5 8 14

P(y) 0.2 0.12 0.1 0.18 0.25 0.15

(i) k Gi gvb wbY©q:

Avgiv Rvwb, m¤¢vebv web¨v‡mi ag©vbymv‡i,  P(x) = 1  1

k+ 2

k + 3

k + 4

k + 3

k + 2

k + 1

k = 1  16

k = 1

 k = 16  k = 16

(ii) GLb, k Gi gvb ewm‡q ˆ`e PjK x Gi m¤¢vebv web¨vm n‡e wb¤œiyc :

ˆ`e PjK x Gi Mo wbY©q : Mo , E(x) =  x P(x) = 2  1

16+ 3  2

16+ 4  3

16+ 5  4

16+ 6  3

16+ 7  2

16+ 8  1

16 = 2

16 + 6

16 + 12

16 + 20

16 + 18

16 + 14

16 + 8

16 = 80

16 = 5 ˆ`e PjK x Gi ‡f`vsK wbY©q :

†f`vsK , V(x) = E (x2) - {E(x)}2 GLv‡b , E(x) = 5

Ges E(x2) =  x2 P(x) = (2)21

16+(3)22

16+(4)23

16+ (5)24

16+(6)23

16+(7)22

16 +(8)21

16 = 4

16 + 18

16 + 48

16 + 100

16 + 108

16 + 98

16 + 64

16 = 440

16 = 27. 5 GLb, V(x) = E (x2) - {E(x)}2

= 27.5 - (5)2 = 27.5 - 25 = 2.5 (iv) E(y) I V(y) Gi gvb wbY©q :

†`qv Av‡Q, y = 2x - 3

 E(y) = E(2x - 3)

= 2 E(x) - 3 = 2  5 - 3 = 10 - 3 = 7

Avevi, y = 2x - 3

 V(y) = V(2x - 3)

= 22 V(x) = 4  2.5 = 10

 mgm¨v (4) : bxjvi ev‡· 7 wU jvj I 5 wU mv`v ej Av‡Q Ges kxjvi ev‡· 4 wU jvj I 10 wU mv`v ej Av‡Q| bxjv Ges kxjv `yÕRbB ev· n‡Z ˆ`e fv‡e 3 wU ej Zzj‡jv|

(i) bxjvi DVv‡bv ej 3 wUi g‡a¨ mv`v e‡ji msL¨v x aiv n‡j x Gi Mo I †f`vsK wbY©q Ki|

(ii) kxjvi DVv‡bv ej 3 wUi kZ© n‡jv , cÖwZwU mv`v e‡ji Rb¨ 25 UvKv cyi¯‹vi cv‡e wKš‘

cÖwZwU jvj e‡ji Rb¨ 50 UvKv Rwigvbv w`‡Z n‡e| kxjvi jvf n‡e, bv ÿwZ n‡e ?

x 2 3 4 5 6 7 8

P(x) 1

k

2 k

3 k

4 k

3 k

2 k

1 k

x 2 3 4 5 6 7 8

P(x) 1

16

2 16

3 16

4 16

3 16

2 16

1 16

 mgvavb : (i) †`Iqv Av‡Q, bxjvi ev‡· jvj ej 7 wU I mv`v ej 5 wU †gvU ej 12 wU

bxjv ev· n‡Z ˆ`e fv‡e 3 wU ej Zzj‡jv| mv`v e‡ji msL¨v x aiv n‡j x Gi gvbmg~n n‡e 0, 1, 2, 3 GLv‡b, P(x = 0) = P( 0 wU mv`v I 3 wU jvj) = 5C0× 7C3

12C3 =1 ×35

220 = 35

220 = 7

44 P(x = 1) = P( 1 wU mv`v I 2 wU jvj) = 5C1× 7C2

12C3 = 5 ×21

220 = 105

220 = 21

44 P(x = 2) = P( 2 wU mv`v I 1 wU jvj) = 5C2× 7C1

12C3 = 10 ×7

220 = 70

220 = 14

44 P(x = 3) = P( 3 wU mv`v I 0 wU jvj) = 5C3× 7C0

12C3 = 10 ×1

220 = 10

220 = 2

44 ˆ`e PjK x Gi m¤¢vebv web¨vm n‡e wb¤œiyc :

* ˆ`e PjK x Gi Mo wbY©q : Mo , E(x) =  x P(x) = 0  7

44+ 1  21

44+ 2  14

44+ 3  2

44 = 21

44 + 28

44 + 6

44 = 50

44 = 1.1364

* ˆ`e PjK x Gi ‡f`vsK wbY©q :

†f`vsK , V(x) = E (x2) - {E(x)}2 GLv‡b , E(x) = 1.1364

Ges E(x2) =  x2 P(x) = (0)27

44+(1)221

44+(2)214

44+ (3)22

44 = 21

44 + 56

44 + 18

44 = 95

44 = 2.1591 GLb, V(x) = E (x2) - {E(x)}2

= 2.1591- (1.1364)2 = 2.1591 - 1.2914 = 0.8677 (ii) †`Iqv Av‡Q, kxjvi ev‡· jvj ej 4 wU

I mv`v ej 10 wU †gvU ej 14 wU

kxjv ev· n‡Z ˆ`e fv‡e 3 wU ej Zzj‡jv| jvj e‡ji msL¨v 0, 1, 2, 3 n‡j mv`v e‡ji msL¨v 3, 2, 1, 0 n‡e|

awi, cÖvß UvKvi cwigv‡bi PjK x

cÖvß jvj e‡ji Rb¨ Rwigvbv 50 UvKv Ges mv`v e‡ji Rb¨ cyi¯‹vi 25 UvKv GLv‡b, P( 0 wU jvj I 3 wU mv`v) = 4C0× 10C3

14C3 =1 ×120

364 = 120

364 =30

91 G†ÿ‡Î cÖvß UvKvi cwigvb = 0( - 50) + 325 = 0 + 75 = 75 UvKv P( 1 wU jvj I 2 wU mv`v) = 4C1× 10C2

14C3 =4 ×45

364 = 180

364=45

91

x 0 1 2 3

P(x) 7

44

21 44

14 44

2 44

G†ÿ‡Î cÖvß UvKvi cwigvb = 1( - 50) + 225 = - 50 + 50 = 0 UvKv P( 2 wU jvj I 1 wU mv`v) = 4C2× 10C1

14C3 =6 ×10

364 = 60

364=15

91

G†ÿ‡Î cÖvß UvKvi cwigvb = 2( - 50) + 125 = - 50 + 25 = - 25 UvKv P( 3 wU jvj I 0 wU mv`v) = 4C3× 10C0

14C3 =4 ×1

364 = 4

364 = 1

91 G†ÿ‡Î cÖvß UvKvi cwigvb = 3( - 50) + 025 = - 150 + 0 = - 150 UvKv ˆ`e PjK x Gi m¤¢vebv web¨vm wb¤œiyc :

myZivs cÖZ¨vwkZ UvKvi cwigvb , E(x) =  x P(x) = 7530

91 + 045

91 + ( 25)  15

91 +( 150) 1

91

= 2250

91 + 0  375

91150

91 = 1725

91 = 18.96 UvKv

mgm¨v (5) : cvikv GKwU †Mg †Ljvq 2 wU wbi‡cÿ Q°v GK‡Î GKevi wb‡ÿc Ki‡jv|

kZ© n‡jv, hw` †m GKwU Qq †dj‡Z cv‡i Z‡e 15 UvKv jvf Ki‡e Ges `yÕwU Qq †dj‡Z cvi‡j 50 UvKv jvf Ki‡e wKš‘ hw` GKwUI Qq †dj‡Z bv cv‡i Z‡e 8 UvKv Rwigvbv w`‡Z n‡e| cvikvi Kx GB †Mg †Ljv DwPZ n‡e| jvf ÿwZ we‡kølY K‡i gšÍe¨ Ki|

mgvavb : (i) cvikv 2 wU wbi‡cÿ Q°v GK‡Î GKevi wb‡ÿc Ki‡jv|

2wU wbi‡cÿ Q°v GK‡Î GKevi wb‡ÿ‡ci bgybv‡ÿÎwU wb¤œiƒc:

bgybv‡ÿ‡Îi †gvU Dcv`vb msL¨v n(S) = 62 = 36 GKwU‡Z Qq Av‡Q GBi~c bgybvwe›`yi msL¨v 10 wU  15 UvKv jvf Kivi m¤¢vebv 10

36 `yÕwU‡ZB Qq Av‡Q GBi~c bgybvwe›`yi msL¨v 1 wU  50 UvKv jvf Kivi m¤¢vebv 1

36 GKwU‡ZI Qq bvB GBi~c bgybvwe›`yi msL¨v 25 wU  8 UvKv Rwigvbv nIqvi m¤¢vebv 25

36

x 75 0 -25 -150

P(x) 30

91

45 91

15 91

1 91

S 2q Q°v wb‡ÿ‡ci gvb

1 2 3 4 5 6

1g Q°v wb‡ÿ‡ci gvb 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

UvKvi cwigv‡bi PjK x n‡j x n‡j Gi m¤¢vebv web¨vm n‡e wb¤œic:

myZivs cÖZ¨vwkZ UvKvi cwigvb , E(x) =  x P(x) = 1510

36 + 501

36 + ( 8)  25

36 = 150

36 + 50

36200

36 = 0 UvKv †h‡nZz jvf ev ÿwZ †KvbUvB nq bv, myZivs cvikv †Mg †Lj‡Z cv‡i|

4_© Aa¨vq ( wØc`x web¨vm)

## wØc`x web¨vm : †h web¨v‡m ‡Póvi msL¨v mmxg A_©vr 30 Gi †P‡q Kg, †Póv¸‡jv ci¯úi ¯^vaxb, cÖwZevi †Póvq mdjZv I wedjZvi m¤¢vebv aªæeK _v‡K Ges m¤¢vebv؇qi mgwó 1 nq, Z‡e †mB web¨vm‡K wØc`x web¨vm e‡j|

g‡b Kwi, x GKwU wØc`x ˆ`e PjK , wØc`x web¨v‡mi m¤¢vebv A‡cÿKwU wb¤œiƒc:

P(x) = ncx pxqn−x ; x = 0, 1, 2, 3, … … … , n †hLv‡b, n = cixÿ‡bi †Póvi msL¨v

p = cÖwZ †Póvq mdjZvi m¤¢vebv

q = cÖwZ †Póvq wedjZvi m¤¢vebv †hLv‡b, p + q = 1

## wØc`x web¨vmi AšÍwb©wnZ kZ© ev Abygvbmg~n : wØc`x web¨v‡mi AšÍwb©wnZ kZ©mg~n wb¤œiƒc:

(i) cixÿvwU‡Z ‡Póvi msL¨v mmxg A_©vr 30 Gi †P‡q Kg _vK‡e, (ii) †Póv¸‡jv ci¯úi ¯^vaxb n‡e

(iii) cÖwZwU †Póvq mdjZv I wedjZv bv‡g †Kej `ywU djvdj _vK‡e (iv) cÖwZwU †Póvq mdjZv I wedjZvi m¤¢vebv aªæeK _vK‡e

(v) mdjZvi msL¨v x GKwU wew”Qbœ PjK n‡e, †hLv‡b x = 0, 1, 2, 3, … … , n

## wØc`x cixÿv : †h ˆ`e cixÿvq ‡Póvi msL¨v mmxg A_©vr 30 Gi †P‡q Kg, †Póv¸‡jv ci¯úi ¯^vaxb, cÖwZevi †Póvq mdjZv I wedjZvi m¤¢vebv aªæeK _v‡K Ges m¤¢vebv؇qi mgwó 1 nq, Z‡e †mB ˆ`e cixÿv‡K wØc`x cixÿv e‡j|

## wØc`x PjK : †h ˆ`e cixÿvq ‡Póvi msL¨v mmxg A_©vr 30 Gi †P‡q Kg, †Póv¸‡jv ci¯úi ¯^vaxb, cÖwZevi †Póvq mdjZv I wedjZvi m¤¢vebv aªæeK _v‡K Ges m¤¢vebv؇qi mgwó 1 nq, Z‡e †mB ‡ÿ‡Î mdjZvi msL¨v wb‡`©kKvix PjK‡K wØc`x PjK e‡j|

## wØc`x web¨v‡mi ag©mg~n :

(i) wØc`x web¨vm GKwU wew”Qbœ Pj‡Ki web¨vm (ii) wØc`x web¨v‡mi `yBwU civwgwZ h_vµ‡g n I p (iii) wØc`x web¨v‡mi mg¯Í m¤¢vebvi †hvMdj GK|

(iv) cÖwZevi †Póvq mdjZvi m¤¢vebv (p) I wedjZvi m¤¢vebv (q) aªæeK _v‡K|

(v) wØc`x web¨v‡mi Mo n‡jv np A_©vr E(x) = np

(vi) wØc`x web¨v‡mi †f`vsK npq I cwiwgZ e¨eavb √npq (vii) GB web¨vmwUi Mo †f`vsK A‡cÿv eo A_©vr E(x)  V(x) (viii) wØc`x web¨v‡mi ew¼gZvsK √ β1 = 𝑞−𝑝

√𝑛𝑝𝑞 ; †hLv‡b p = q n‡j web¨vmwU mylg, p  q n‡j web¨vmwU FYvZ¥K ew¼g Ges p  q n‡j web¨vmwU abvZ¥K ew¼g

(ix) wØc`x web¨v‡mi m~PjvZvsK β2 = 3 + 1−6𝑝𝑞

𝑛𝑝𝑞

X 15 50 - 8

P(x) 10

36

1 36

25 36

(x) `ywU ¯^vaxb wØc`x Pj‡Ki †hvMdj GKwU wØc`x PjK|

## wØc`x web¨v‡mi †QvU Dccv`¨ :

(i) cÖgvY Ki †h , wØc`x web¨v‡mi Mo †f`vsK A‡cÿv eo A_©vr E(x)  V(x)  cÖgvY : g‡b Kwi , x GKwU wØc`x PjK hvi civwgwZ n , p †hLv‡b p + q = 1 Avgiv Rvwb, wØc`x web¨v‡mi Mo E(x) = np Ges †f`vsK V(x) = npq GLb, V(x)

E(x) = npq

np = q < 1 A_©vr V(x)

E(x) < 1  V(x) < E(x)

 E(x) > V(x)

myZivs, wØc`x web¨v‡mi Mo †f`vsK A‡cÿv eo A_©vr E(x)  V(x) (Proved)

(ii) wØc`x web¨v‡mi †cŠbtc~wbK m~Î ev †iKvm©b (Recurssion) m~Î :

 †iKvm©b m~Î D™¢veb : g‡b Kwi , x GKwU wØc`x PjK hvi civwgwZ n I p †hLv‡b p + q = 1 Avgiv Rvwb, wØc`x web¨v‡mi m¤¢vebv A‡cÿK

P(x) = ncx px qn−x ; x = 0, 1, 2, 3, … … … , n Ges wØc`x web¨v‡mi †cŠbtc~wbK m~Î ev †iKvm©b (Recurssion) m~Î nj  P(x + 1) = n−x

x+1 .p

q . P(x)

(ii) cÖgvb Ki †h,wØc`x web¨v‡mi mg¯Í m¤¢vebvi mgwó GK (1).

cÖgvY: g‡b Kwi , x GKwU wØc`x PjK hvi civwgwZ n I p †hLv‡b p + q = 1 Avgiv Rvwb, wØc`x web¨v‡mi m¤¢vebv A‡cÿK ,

P(x) = ncx px qn−x ; x = 0, 1, 2, 3, … … … , n GLb, mg¯Í m¤¢vebvi mgwó = ∑nx=0P(x)

= ∑nx=0nCx px qn−x

= nc0 p0 qn - 0 + nc1 p1 qn - 1 + nc2 p2 qn - 2 + … ... … + ncn pn qn - n = 1.1. qn + nc1 p1 qn - 1 + nc2 p2 qn - 2 + … ... … + 1. pn .1

= qn + nc1 p1 qn - 1 + nc2 p2 qn - 2 + … ... … + pn = (q + p)n = (1)n = 1 [ q + p = 1 ]  wØc`x web¨v‡mi mg¯Í m¤¢vebvi mgwó GK (1). (Proved) MvwYwZK mgm¨vejx :

mgm¨v (1) : GKwU wØc`x Pj‡Ki Mo 4 Ges cwiwgZ e¨eavb √3 (K) ‰`e PjKwUi k~b¨gvb MÖnY bv Kivi m¤¢vebv wbY©q Ki|

(L) P(x ≤ 2) I P(x ≥ 2) Gi g‡a¨ Zzjbv Ki|

(M) web¨vmwUi ew¼gZv I m~uPjZv wbY©q K‡i web¨vmwUi AvK…wZ I cÖK…wZ m¤ú‡K©

gšÍe¨ Ki|

mgvavb : (K) awi, wØc`x PjK x

†`Iqv Av‡Q , Mo E(x) = 4 Ges cwiwgZ e¨eavb √V(x) = √3 ∴ †f`vsK V(x) = 3

Avgiv Rvwb, n I p civwgwZ wewkó wØc`x web¨v‡mi m¤¢vebv A‡cÿK

P(x) = nCx px qn−x ; x = 0, 1 , 2, 3 , … … … , n

wØc`x web¨v‡mi Mo E(x) = np Ges †f`vsK V(x) = npq

∴ np = 4 ... ... ... (i) Ges npq = 3 ... ... ... (ii) (ii) ÷ (i) n‡Z, npq

np = 3

4 ∴ q = 3

4

Ges p = 1- q = 1 - 3

4 = 1

4 (i) n‡Z, n . 1

4 = 4 ∴ n = 16

n , p I q Gi gvb ewm‡q wØc`x web¨v‡mi m¤¢vebv A‡cÿK P(x) = 16Cx (1

4)x ( 3

4)16−x ; x = 0, 1 , 2, 3 , … … … , 16 ˆ`e PjKwUi k~Y¨ gvb MÖnY bv Kivi m¤¢vebv = 1 - P(x = 0)

= 1 - 16C0 (1

4)0 ( 3

4)16−0 = 1 - 1× 1 × 0.0100226 = 0.9899774

(L) P(x ≤ 2) I P(x ≥ 2) Gi g‡a¨ Zzjbv P(x ≤ 2) = P(x =0) + P(x=1) + P(x=2) = 0.0100226 + 16C1 (1

4)1 ( 3

4)16−1 + 16C2 (1

4)2 ( 3

4)16−2 = 0.010023 + 16× 0.25 × 0.01336 + 120 × 0.0625 × 0.01782 = 0.010023 + 0.05344 + 0.13365 = 0.197113

P(x ≥ 2) = 1 - P(x =0) - P(x=1) = 1 - 0.010023 - 0.05344 = 0.84633 ∴ P(x ≤ 2) ≠ P(x ≥ 2)

(M) web¨vmwUi ew¼gZv I m~uPjZv wbY©q : web¨vmwUi ew¼gZvsK √ β1 = q−p

√npq = 0.75−0.25

√16 ×0.25 ×0.75 = 0.5

1.73205 = 0.28868 wØc`x web¨v‡mi m~PjvZvsK β2 = 3 + 1−6pq

npq = 3 + 1−6 × 0.25 ×0.75 16 ×0.25 ×0.75 = 3 + 1−6 × 0.25 ×0.75

3 = 3 + − 0.125

3 = 3 - 0.04167 = 2.95833 †h‡nZz web¨vmwUi √ β1 Gi gvb abvZ¥K Ges β2 ˂ 3

myZivs web¨vmwU abvZ¥K ew¼g Ges AbwZ m~uPv‡jv |

mgm¨v (2) : GKwU KviLvbvi Drcvw`Z `ª‡e¨i 40% Lvivc| `ªe¨¸‡jv 10wUi c¨v‡K‡U mieivn Kiv nq|

(K) †Kvb Lvivc `ªe¨ bv _vKvi m¤¢vebv (L) Kg c‡ÿ 1wU Lvivc `ªe¨ _vKvi m¤¢vebv

(M) eo ‡Rvo 2 wU Lvivc `ªe¨ _vKvi m¤¢vebv wbY©q Ki|

mgvavb : awi, PjK x : Lvivc `ª‡e¨i msL¨v ∴ p = 40% = 0.4

100

40  , q = 1-p =1-0.4 = 0.6 , Ges n = 10

Zvn‡j x GKwU wØc`x PjK|∴ P(x) = ncx px qn−x ; x = 0, 1, 2, 3, … … … , n GLb P(x) = 10cx (0.4)x (0.6)10−x ; x = 0, 1, 2, 3, … … … , 10

(K) †Kvb Lvivc `ªe¨ bv _vKvi m¤¢vebv P(x=0) = 10c0 (0.4)0 (0.6)10−0 = 1× 1×(0.6)10 = .00606

(L) Kg c‡ÿ 1wU Lvivc `ªe¨ _vKvi m¤¢vebv

P(x ≥ 1) = 1 - P(x =0) = 1 - 0.00606 =0.99394 (M) eo ‡Rvo 2 wU Lvivc `ªe¨ _vKvi m¤¢vebv

P(x ≤ 2) = P(x =0) + P(x=1) + P(x=2)

= 0.00606 + 10c1 (0.4)1 (0.6)10−1+10c2 (0.4)2 (0.6)10−2 =0.00606+10 × 0.4×(0.6)9 +45 ×0.16 × (0.6)8

= 0.00606 +0.04031+0.12093 =0.16729

Dokumen terkait