Chapter 6. Conclusions and Future Works 106
Bibliography
Akatsu, T., Numata, S., Demura, T., Shinoda, Y., and Wakai, F. (2016). Representative indentation yield stress evaluated by behavior of nanoindentations made with a point sharp indenter. Mechanics of Materials, 92(Supplement C):1–7.
Alaboodi, A. S. and Hussain, Z. (2017). Finite element modeling of nano-indentation technique to characterize thin film coatings. Journal of King Saud University- Engineering Sciences, In Press(https://doi.org/10.1016/j.jksues.2017.02.001).
Begau, C., Hartmaier, A., George, E. P., and Pharr, G. M. (2011). Atomistic pro- cesses of dislocation generation and plastic deformation during nanoindentation. Acta Materialia, 59(3):934–942.
Bressan, J. D., Tramontin, A., and Rosa, C. (2005). Modeling of nanoindentation of bulk and thin film by finite element method. Wear, 258(1):115–122.
Bufford, D., Liu, Y., Wang, J., Wang, H., and Zhang, X. (2014).In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.
Nature Communications, 5:ncomms5864.
Cai, J. and Ye, Y. (1996). Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Physical Review B, 54(12):8398.
Catoor, D., Gao, Y. F., Geng, J., Prasad, M. J. N. V., Herbert, E. G., Kumar, K. S., Pharr, G. M., and George, E. P. (2013). Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation. Acta Materialia, 61(8):2953–2965.
Chamani, M., Farrahi, G. H., and Movahhedy, M. R. (2016). Molecular dynamics simulation of nanoindentation of nanocrystalline Al/Ni multilayers. Computational Materials Science, 112(Part A):175–184.
107
Bibliography 108 Chang, N.-K., Lin, Y.-S., Chen, C.-Y., and Chang, S.-H. (2009). Size effect of indenter on determining modulus of nanowires using nanoindentation technique. Thin Solid Films, 517(13):3695–3697.
Chen, X., Ashcroft, I. A., Wildman, R. D., and Tuck, C. J. (2017). A combined in- verse finite element – elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale. Interna- tional Journal of Solids and Structures, 104(Supplement C):25–34.
Cheong, W. and Zhang, L. (2000). Molecular dynamics simulation of phase transforma- tions in silicon monocrystals due to nano-indentation. Nanotechnology, 11(3):173.
Du, X., Zhao, H., Zhang, L., Yang, Y., Xu, H., Fu, H., and Li, L. (2015). Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature. Scientific reports, 5(16275).
Fang, T.-H., Chang, W.-Y., and Huang, J.-J. (2009). Dynamic characteristics of nanoin- dentation using atomistic simulation. Acta Materialia, 57(11):3341–3348.
Fang, T.-H. and Wu, J.-H. (2008). Molecular dynamics simulations on nanoindentation mechanisms of multilayered films. Computational Materials Science, 43(4):785–790.
Feichtinger, D., Derlet, P. M., and Van Swygenhoven, H. (2003). Atomistic simulations of spherical indentations in nanocrystalline gold. Physical Review B, 67(2):024113.
Fu, T., Peng, X., Chen, X., Weng, S., Hu, N., Li, Q., and Wang, Z. (2016). Molecular dynamics simulation of nanoindentation onCu/N inanotwinned multilayer films using a spherical indenter. Scientific Reports, 6(35665).
Fu, T., Peng, X., Wan, C., Lin, Z., Chen, X., Hu, N., and Wang, Z. (2017). Molecular dynamics simulation of plasticity in VN(001) crystals under nanoindentation with a spherical indenter. Applied Surface Science, 392(Supplement C):942–949.
Gannepalli, A. and Mallapragada, S. K. (2001). Molecular dynamics studies of plastic deformation during silicon nanoindentation. Nanotechnology, 12(3):250.
Goel, S., Faisal, N. H., Luo, X., Yan, J., and Agrawal, A. (2014). Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. Journal of physics D: applied physics, 47(27):275304.
Bibliography 109 Gˆırleanu, M., Pac, M. J., Louis, P., Ersen, O., Werckmann, J., Rousselot, C., and Tuilier, M. H. (2011). Characterisation of nano-structured titanium and aluminium nitride coatings by indentation, transmission electron microscopy and electron energy loss spectroscopy. Thin Solid Films, 519(18):6190–6195.
Guo, T., Siska, F., Cheng, J., and Barnett, M. (2018). Initiation of basal slip and tensile twinning in magnesium alloys during nanoindentation. Journal of Alloys and Compounds, 731:620–630.
Hou, M. and Melikhova, O. (2009). Internal stress and mechanical deformation of al and al/ni multilayered nanowires. Acta Materialia, 57(2):453–465.
Hu, T. Y., Zheng, B. L., Hu, M. Y., He, P. F., and Yue, Z. F. (2015). Molecular dynamics simulation of incipient plasticity of nickel substrates of different surface orientations during nanoindentation. Materials Science and Technology, 31(3):325–331.
Huang, C., Peng, X., Fu, T., Zhao, Y., Feng, C., Lin, Z., and Li, Q. (2017). Nanoinden- tation of ultra-hard cBN films: A molecular dynamics study. Applied Surface Science, 392(Supplement C):215–224.
Huang, S. and Zhou, C. (2017). Modeling and simulation of nanoindentation. JOM, 69(11):2256–2263.
Jiang, W., Pinkerton, F., and Atzmon, M. (2003). Effect of strain rate on the formation of nanocrystallites in an al-based amorphous alloy during nanoindentation. Journal of Applied Physics, 93(11):9287–9290.
Jing, Y., Zhang, Y., Blendell, J., Koslowski, M., and Carvajal, M. T. (2011). Nanoin- dentation method to study slip planes in molecular crystals in a systematic manner.
Crystal Growth & Design, 11(12):5260–5267.
Junge, T. and Molinari, J.-F. (2014). Plastic activity in nanoscratch molecular dynamics simulations of pure aluminium. International Journal of Plasticity, 53(Supplement C):90–106.
Khan, M. K., Hainsworth, S. V., Fitzpatrick, M. E., and Edwards, L. (2010). A combined experimental and finite element approach for determining mechanical properties of aluminium alloys by nanoindentation. Computational Materials Science, 49(4):751–
760.
Bibliography 110 Kim, K. J., Yoon, J. H., Cho, M. H., and Jang, H. (2006). Molecular dynamics simulation
of dislocation behavior during nanoindentation on a bicrystal with aP
=5 (210) grain boundary. Materials Letters, 60(28):3367–3372.
Knap, J. and Ortiz, M. (2003). Effect of Indenter-Radius Size on Au(001) Nanoinden- tation. Physical Review Letters, 90(22):226102.
Kot, M., Rakowski, W., Lackner, J. M., and Major, L. (2013). Analysis of spherical indentations of coating-substrate systems: Experiments and finite element modeling.
Materials & Design, 43(Supplement C):99–111.
Landman, U., Luedtke, W., Burnham, N., and COLTON, R. (1990). Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science, 248(4954):454–461.
Lee, Y., Park, J. Y., Kim, S. Y., Jun, S., and Im, S. (2005). Atomistic simula- tions of incipient plasticity under al (111) nanoindentation. Mechanics of Materials, 37(10):1035–1048.
Li, J., Van Vliet, K. J., Zhu, T., Yip, S., and Suresh, S. (2002). Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature, 418(6895):307–310.
Li, Q., Huang, C., Liang, Y., Fu, T., and Peng, T. (2016). Molecular dynamics sim- ulation of nanoindentation of Cu/Au thin films at different temperatures. DOI:
10.1155/2016/9265948.
Lofaj, F. and N´emeth, D. (2017). The effects of tip sharpness and coating thickness on nanoindentation measurements in hard coatings on softer substrates by FEM. Thin Solid Films, 644:173–181.
Lu, C., Gao, Y., Michal, G., Huynh, N. N., Zhu, H. T., and Tieu, A. K. (2009). Atomistic simulation of nanoindentation of iron with different indenter shapes. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 223(7):977–984.
Ma, X.-L. and Yang, W. (2003). Molecular dynamics simulation on burst and ar- rest of stacking faults in nanocrystallineCu under nanoindentation. Nanotechnology, 14(11):1208.
Bibliography 111 Mantisi, B. (2016). Generation of polycrystalline material at the atomic scale. Compu-
tational Materials Science, 118:245–250.
Mendelev, M., Asta, M., Rahman, M., and Hoyt, J. (2009). Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–M g alloys. Philosophical Magazine, 89(34-36):3269–3285.
Minor, A. M., Syed Asif, S. A., Shan, Z., Stach, E. A., Cyrankowski, E., Wyrobek, T. J., and Warren, O. L. (2006). A new view of the onset of plasticity during the nanoindentation of aluminium. Nature Materials, 5(9):697–702.
Mojumder, S., Amin, A. A., and Islam, M. M. (2015). Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study. Journal of Applied Physics, 118(12):124305.
Nair, A. K., Parker, E., Gaudreau, P., Farkas, D., and Kriz, R. D. (2008). Size effects in indentation response of thin films at the nanoscale: A molecular dynamics study.
International Journal of Plasticity, 24(11):2016–2031.
Naveen Kumar, N., Tewari, R., Durgaprasad, P. V., Dutta, B. K., and Dey, G. K. (2013).
Active slip systems in bcc iron during nanoindentation: A molecular dynamics study.
Computational Materials Science, 77(Supplement C):260–263.
Nejadseyfi, O., Shamsborhan, M., Azimi, A., and Shokuhfar, A. (2015). The roles of crystallographic orientation, high-angle grain boundary, and indenter diameter during nano-indentation. Acta Mechanica, 226(11):3823–3829.
Njeim, E. K. and Bahr, D. F. (2010). Atomistic simulations of nanoindentation in the presence of vacancies. Scripta Materialia, 62(8):598–601.
Oliver, W. C. and Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to method- ology. Journal of Materials Research, 19(1):3–20.
Pandure, P. S., Jatti, V. S., and Singh, T. P. (2014). Finite Element Simulation of Nano- indentation of DLC Coated HSS Substrate. Procedia Materials Science, 6(Supplement C):1619–1624.
Bibliography 112 Peng, C. and Zeng, F. (2017). A molecular simulation study to the deformation behaviors and the size effect of polyethylene during nanoindentation. Computational Materials Science, 137(Supplement C):225–232.
Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Jour- nal of computational physics, 117(1):1–19.
Reddy, J. N. (1993). An introduction to the finite element method, volume 2. McGraw- Hill New York.
Salehinia, I., Perez, V., and Bahr, D. F. (2012). Effect of vacancies on incipient plasticity during contact loading. Philosophical Magazine, 92(5):550–570.
Saraev, D. and Miller, R. E. (2005). Atomistic simulation of nanoindentation into cop- per multilayers. Modelling and Simulation in Materials Science and Engineering, 13(7):1089.
Seymour, R., Hemeryck, A., Nomura, K.-i., Wang, W., Kalia, R. K., Nakano, A., and Vashishta, P. (2014). Nanoindentation of NiAl and Ni3al crystals on (100), (110), and (111) surfaces: A molecular dynamics study. Applied Physics Letters, 104(14):141904.
Shan, Z. and Sitaraman, S. K. (2003). Elastic–plastic characterization of thin films using nanoindentation technique. Thin Solid Films, 437(1):176–181.
Shibutani, Y. and Tsuru, T. (2007). Nanoindentation-Induced Collective Dislocation Behavior and Nanoplasticity. Key Engineering Materials, 340-341:39–48.
Shibutani, Y., Tsuru, T., and Koyama, A. (2007). Nanoplastic deformation of nanoin- dentation: Crystallographic dependence of displacement bursts. Acta Materialia, 55(5):1813–1822.
S´anchez-Mart´ın, R., Zambaldi, C., P´erez-Prado, M. T., and Molina-Aldareguia, J. M.
(2015). High temperature deformation mechanisms in pure magnesium studied by nanoindentation. Scripta Materialia, 104(Supplement C):9–12.
Somekawa, H., Tsuru, T., Singh, A., Miura, S., and Schuh, C. A. (2017). Effect of crystal orientation on incipient plasticity during nanoindentation of magnesium. Acta Materialia, 139:21–29.
Bibliography 113 Spearot, D. E. and Sangid, M. D. (2014). Insights on slip transmission at grain bound- aries from atomistic simulations. Current Opinion in Solid State and Materials Sci- ence, 18(4):188–195.
Stukowski, A. (2009). Visualization and analysis of atomistic simulation data with ovito–the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 18(1):015012.
Stukowski, A., Bulatov, V. V., and Arsenlis, A. (2012). Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering, 20(8):085007.
Sun, S., Peng, X., Xiang, H., Huang, C., Yang, B., Gao, F., and Fu, T. (2017). Molecular dynamics simulation in single crystal 3c-SiC under nanoindentation: Formation of prismatic loops. Ceramics International, 43(18):16313–16318.
Szlufarska, I., Kalia, R. K., Nakano, A., and Vashishta, P. (2005). Atomistic mechanisms of amorphization during nanoindentation of sic: a molecular dynamics study. Physical Review B, 71(17):174113.
Tavazza, F., Senftle, T. P., Zou, C., Becker, C. A., and van Duin, A. C. T. (2015).
Molecular Dynamics Investigation of the Effects of Tip–Substrate Interactions during Nanoindentation. The Journal of Physical Chemistry C, 119(24):13580–13589.
Tsuru, T. and Shibutani, Y. (2006). Atomistic simulations of elastic deformation and dislocation nucleation in Al under indentation-induced stress distribution. Modelling and Simulation in Materials Science and Engineering, 14(5):S55.
Tsuru, T. and Shibutani, Y. (2007a). Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu. Physical Review B, 75(3):035415.
Tsuru, T. and Shibutani, Y. (2007b). Anisotropic effects in elastic and incipient plastic deformation under (001),(110), and (111) nanoindentation of al and cu. Physical Review B, 75(3):035415.
Tsuru, T. and Shibutani, Y. (2007c). Initial yield process around a spherical inclusion in single-crystalline aluminium. Journal of Physics D: Applied Physics, 40(7):2183.
Bibliography 114 Tsuru, T. and Shibutani, Y. (2008). Dislocation Nucleation and Interaction under Nanoindentation in Single Crystalline Al and Cu: Molecular Dynamics Simulations.
Journal of Computational Science and Technology, 2(4):459–467.
Verkhovtsev, A. V., Yakubovich, A. V., Sushko, G. B., Hanauske, M., and Solov’yov, A. V. (2013). Molecular dynamics simulations of the nanoindentation process of tita- nium crystal. Computational Materials Science, 76(Supplement C):20–26.
Vodenitcharova, T., Kong, Y., Shen, L., Dayal, P., and Hoffman, M. (2015). Nano/mi- cro mechanics study of nanoindentation on thin Al/Pd films. Journal of Materials Research, 30(5):699–708.
Wagner, R. J., Ma, L., Tavazza, F., and Levine, L. E. (2008). Dislocation nucleation during nanoindentation of aluminum. Journal of Applied Physics, 104(11):114311.
Warren, A. W. and Guo, Y. B. (2006). Machined surface properties determined by nanoindentation: Experimental and FEA studies on the effects of surface integrity and tip geometry. Surface and Coatings Technology, 201(1):423–433.
Xiang, H., Li, H., Fu, T., Zhao, Y., Huang, C., Zhang, G., and Peng, X. (2017). Molec- ular dynamics simulation of AlN thin films under nanoindentation. Ceramics Inter- national, 43(5):4068–4075.
Xu, S., Wan, Q., Sha, Z., and Liu, Z. (2015). Molecular dynamics simulations of nano- indentation and wear of theγTi-Al alloy. Computational Materials Science, 110(Sup- plement C):247–253.
Yaghoobi, M. and Voyiadjis, G. Z. (2016). Atomistic simulation of size effects in single- crystalline metals of confined volumes during nanoindentation. Computational Mate- rials Science, 111(Supplement C):64–73.
Yu, W. and Shen, S. (2009). Effects of small indenter size and its position on incip- ient yield loading during nanoindentation. Materials Science and Engineering: A, 526(1):211–218.
Zhang, W., Gao, Y., Xia, Y., and Bei, H. (2017a). Indentation Schmid factor and incipient plasticity by nanoindentation pop-in tests in hexagonal close-packed single crystals. Acta Materialia, 134:53–65.