• Tidak ada hasil yang ditemukan

Future Work

Dalam dokumen Full Thesis .pdf - BUET (Halaman 63-72)

Conclusion

4.2 Future Work

Furtherextensions)n this study may include:

I) The NEGF approach can_be.used_to-'limula1e_gate _oxide \eakage-characteristics-of -ID -MGS structures. _Currently, the widely used method in modeling gate leakage is the WKB approxlmation-15r-53}. In-this-method- quantum-transmissiOlls-tllr-ough.the oxide layers-are- - evaluated approximately in a post-process operation. The electrostatic profile is obtained separately~ without-considering _the_effec.ts.on_the__charge_distrihutionoftheJunneling-GlHTent.

In addition, incident electrons are represented by plane-waves, so the effects of 2D carriers in the inversion-layer-on-the gate tunneling may-not.be properlyasscssed.- 'fhc-NEGF method,.

however, can exactly solve the transport problem, when coupled to the Poisson equation, providing a way.ofselfoconsistently _assessing1he..gate leakage aIld_electr-Ostatics_profile,.This method also allows us to examine the energy spectrum of the leakage current, which distinguishes the-eontributions-fr-em-the 2Q discrete-states-andID-{;ontimuHls-states.- _

2) Different .scattering _modeLare available.and..scatter.can_he.includedin.the-simulation -as.it will give the method a real life touch. One method to study the dissipative transport can be the use oflhe--Biittiker-probe-baseG-SGattering- m-ode1s-wherc-scattering centers-are- treated-as--- reservoirs that change the energy or momentum of the carriers and not the total number of -carriers.in _the_system...lt _has.he.en _used.in.the nanoMO.8_[A5J,.and.1'ecentl}',in-a-nanewire

simulation [54]. Each scattering center is modeled through a perturbation strength characterized by a position dependent self-energy, which can be mapped onto an equivalent m-obility.

3) Strained silicon MOSFETs are being studied in recent years. The methods presented in this work can be extended for the study of both uniaxially and biaxially strained DG MOSFETs.

52

In this case, the simple effective mass approximation might not be true because the electron and hole effective masses change with strain as does the band alignment.

The NEGF approach is a very powerful mathematical tool for addressing how a quantum- state evolutes temporally under a varieties of interactions within any tiny system (or quantum level device).AS-device .scaling_continues,~0Ye1.stnlcturesl4esigns must ~¥entually-take.over.the role clMfently being played by semiconductor-based transistors. Some recent works have brought carbon-tuDe and- moleeule-cluster-llased. device_structur~s-into-.foous-[-S5-S8]~These new-areas--.

provide us plenty of opportunities to apply the NEGF approach at theoretical research levels. In principle, _theJ'lEGF _formalism~ot_on1y .enables_usJo_understand-the-microscopic-phenomena, but also enable us to exploit the hidden potential. Moreover, it should be noted that this approach is applicable in all non-equilibrium systems beyond electron devices [9, 59].

53

Bibl~ograpby

[I]. G.E. Moore;-"Pregress" in-digital-integrated electroniGs," IEJ)M-Tef;h~Digest, pp ..Jl-l.3.,- -' 1975.

[2]. Internationol Iechnalogy ..Roadmap -for .Semi.comiuctolOs,. ..8emiconduct{)f -Industry A:;sociation, 2005.

[3].

Y.

Taur;-B;-Buehanan,-W.Ghen, I),Frank,.K. Ismail,.S~H~Lo, G.-Sai,Halasz.,R.- Viswanathan, H.-J. C. Wann, S. Wind and H.-S. Wong, "CMOS scaling into the nanometeuegime, ".l:'l"Oc.JEEE,.85,pp..468- 504,.1997.

[4]. H.-8. Wong, D. Frank and P. Solomon, "Device Design Considerations for Double-Gate, Ground:Plane, and. Single-Gated -UJtra-'fmn-SOIMOSFgT's-at .. thc- 25.-nm-ChanneL Length Generation," IEDM Tech. Digest, pp. 407-410, 1998.

[5]. S.A ..Mahmood, "Analysis _of .Double ...Gate...MOSFELthrough-a _Non-Charge -Sheet Model", M. Sc. Thesis, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh,.2006.- - .

[6]. K. Banoo, Direct Solution o/the Boltzmann Transport Equation in Nanoscale Si Device, Ph.D ..dissertation, Purdue.Uni\Zersity, W.est.Lafay.ette,..rn, -2llg0.

[7]. D.K. Ferry, R. Akis, D. Vasileska, "Quantum effects in MOSFETs: use of an effective potentiat-in-J9-Mente. Car.kJ_simulatien-eJ'..ultra-shert-channel_devices," lED M..Iech ...

Digest, pp. 287 -290, 2000.

[8]. L.Y. Keldysh, "Q.uantum .transporLequations...for-high -electcic-fields,''..sov.-P-hys~JEl'P 20,pp. 1018, 1965.

---f9~~

.k- Rammer-and-H. Smith,.-':Quantum-.field-theoretical-method--in-transport- the(}ry--oL metals," Rev. Mod. Phys. 62, pp. 323-359, 1986.

[10].

S.

Datta,.Electronic TransporUn..MesoscopicSystems,....cambridg.e -Univer-sity -Press, Cambridge, UK, 1997.

[II]. .8":Davari, R~lI..-I)ennar4-and-G.G. Shahidi,-'~CMOS. scalmg- fOl"--highperformance and.._

low-power-the next ten years," Proc. IEEE, 89, pp. 595-606,1995.

[12]. H.-S. Wong, D. Frank and P. Solomon, C. H.-J. Wann and J. Welser, "Nanoscale CMOS," Proc. IEEE, 87, pp. 537-570, 1999.

54

[13]. !')..A.- AbrikQSo:v~.L.P. _Gorkov.and .I.E ..Dzyaloshinski,_Quamum -Eield ..IheoFefical

~ Methods in Statistical Physics, 2nd ed., Pergamon, New York, 1965.

[14]. D.LErank,Y. Taur and lL-S.)'.Wong, "Generalized Scale Length for Two-Dimensional Effects in MOSFETs," IEEE Electron Dev. Lett., 10, pp. 385-387,1998.

[15].

y_

Taur.and J ...Ning,.Eundamentalsoj tl.SLfle:vices,.Cambridge-Uni:VefSity -Press, Cambridge, UK, 1998.

[16].

VA::.

Sun, Y:Tam; R-;-&.Dennard-and-SJ>~ K-lepner,"Submicwn-Challlllll-GMOS.for-- . Low-Temperature Operation," IEEE Trans. Electron Devices, 34, pp. 19-27, 1987.

[17].

SJ..

Wind,.D.LErank,.and..H.".s. Wong, ~ca1ing _silicon.MOS-de:vices-to..their-limits,"

Microelectrm:zic Engineering,, 32, pp. 271-282, 1996.

[18]. ¥: Taur, C.H. Wann-and-D,-Frnnk., "25. nm-CMQS-Qesign-Gonsiderations," IEDM-1'eGhc - Digest, pp. 789-792, 1998.

[19]. A.Wei,.M.J . ..sherony _and_D..A...Antoniadis, '~ffecLoLFJoating"Body _Charge-on-8m MOSFET Design," IEEE Trans. Electron Dev., 45, pp. 430-438, 1998.

[20] ... L.T.

SU,

J.B. JacoDs, J.E. Chung and D.A. Antoniadis, "Deep-Submicrometer Channel Design in Silicon-on-Insulator (SOl) MOSFET's," IEDM Tech. Digest, pp. 183-186, 1994.

[21], Ren, S. Bourland, S. Lee, J. Denton, M.S. Lundstrom and R. Bashir, "Ultra-thin Body SOl- by--€ootr-olled- Ox-idatioll--of. Thin- Si-Membranes," presented--at.lEEESilicon- Nanoelectronics Workshop, Honolulu, Hawaii, June 11-12,2000.

[22]. I..._Chang,_S. Iang,..I ..King,_LBokor..and-C._Hu, "Gate.Length_Scaling and..Ibresheld Voltage Control of Double-Gate MOSFETs," IEDM Tech. Digest, pp. 719-722, 2000 . ..[.2-3].--<:h-Neudeck, T.-G. Su-and-J,- Denton, "Novel-Silicefi--Rpitaxy-for--Ad-vanced- MOSFEI..-

Devices," IEDM Tech. Digest, pp. 169-172, 2000.

[24]. M.=1( Jeong, .B.c._Jones,..T . .Kanarsky~...z....Ren, _O. .Dokwnaci,-R.A.--Roy,-L. -8hi,-'f.

Furukawa, Y. Taur, R.J. Miller, H-S Wong, "Deep-Submicrometer Channel Design in Silrcon-on=InsrnaklF-{SQI}-MQSFETs,"ID-appear--in-IEDM,..200L- -

[25]. D.J. Frank, S. Lauxand M. Fischetti, "Monte Carlo Simulation of a 30 nm Dual-Gate MOSFET: How Short Can Si Go?" IEDM Tech. Digest, pp. 553-556, 1992.

ss

[26]. -?--.-R.en,R. V~nugopal, S.J)atta _and~.S. Lundstrom, ':Examination-Of.-Design and .' MallUfacturing Issues in a 10 nm Double Gate MOSFET using Nonequilibrium Green's

-Fti~ction Simullltien/' in-IEDM-'rech. Digest,..ppc107-~1O,200.\-

[27]. M.S. Lundstrom, Fundamentals of Carrier Transport, 2nded., Cambridge University Press,_Cambridge,-UK, -2000.

[28]. F. Assad, Z. Ren, D. Vasileska, S. Datta, and M.S. Lundstrom, "On the performance . limits (or Si MOSFET's: A theoretical study," IEEE Trans. Electron Dev., 47, pp. 232-

240,2000.

[29]. y. TauuLa!., "An_ana1y:ticaLsolutionio.a_dOllble~gate -MOSF-ELwith.undoped-bedy,"

IEEE Electron Device Lett., vol. 21, pp. 245-247, July 2000.

130]. Y.Taur, ,,-Analytic-solutiens-ef'-chaFge-and--capacitanG€ -in-symmetric- and-as)1ll1lletric-- double-gate MOSFETs," IEEE Trans. Electron Devices, vol. 48, p. 2861, Dec. 2001.

[31].

y.

Taur .et al.,.~_continuous,_analy:tic _drain~currenLmodel.for .DG--MOSF-Efs,"-IEEE Ekctron Device Lett., vol. 25, pp. 107-109, Feb. 2004.

[32].

f.

R. Hauser-and-M~-A._Littlejohn,-" Appr.-imations-fer-accumulation-and- in¥er.sioll-- space-charge layers in semiconductors," Solid-State Electronics, vol. II, p. 667,1968.

[33]. MShoji .aruLS..Horlgucm, ''Electronic.structures_and.phononJimited.e1ectron.mobility-ef double-gate silicon-on-insulator silicon inversion layers," J. Appl. Phys., vol. 85, pp.

- 2722-27Jt;-199Ck- ,-

[34]. H. C. Pao and C. T. Sah, "Effects of diffusion current on characteristics of metal-oxide (insulator )-~miconductoLtransistOIs,''-Solid-State-Electl'On, -vol. 9,-p.-927 ,-,1966.

[35]. S. Datta, "Nanoscale device modeling: the green's function method," Superlattices and MiaostJ'uetwes,-No1.28,dS!oA,pp.253"278,-2000. - ".

[36]. M. P. Anantram, M. S. Lundstrom, and D. E. Nikonov, "Modeling oLNanoscale

.

~-

_D.eylces~Xiv.:cond-matl06 W247-v2;-Feb..2()(l'7.

[37L S. Hriguchi, Physica B 227, 336, 1996.

[18]. R, Venugepal, M.-Paulsson,. &-Goasguen"S. Datta, and M. Lundstrom, "A simple quantum mechanical treatment of scattering in nanoscale transistors," J.Appl. Phys., vol.

93, pp. 5613-5623,2003.

56

[39]. E.. Venugopal,L Ren,_D.J1ly.anovic,_S ..Dat1a,_and M. Lundstrom, "Simulatiogquantum transport in nanoscale mosfets: Real vs. mode space approaches," J.Appl. Phys., vol. 92, pp: 3730~3139,2002,

[40]. E. Polizzi and S. Datta, Proceedings of the 2003 third IEEE Conference-oIL..

Nanotechno1ogy~~2-J,tAl1gust200;),pc-4e.

[41], R. Venugopal, PhD Thesis, Purdue University, USA, 2003.

[42]. P. V-:. HaleIl-and-De Pulfrey, "Ac~urate, shoJt-series_approximations_to_rermi-dirac integrals of order-l/2, 1/2, 1,3/2,2,5/2,3, and 7/2", J. Appl. Phys., vol. 57, pp. 5271- 5274,-1985.

[43-" E. Polizzi and N. B. Abdallah, Physical Review B 66, 245301, 2002.

[44]. J. Jin, "The-Finite ElernentMethod-in.ElectromagnetiGs", John.Wile¥-&-Sons, -Inc., New- York, USA, 1993.

[45]. Z_Ren,R. .Y...enugopal,S..Doasguen,S ..Datta_and..M-Lnndstr.om, ~anoMOS 2 ..$;-A-two dimensional simulator for quantum transport in double-gate MOSFETs", IEEE Trans.

Elec; Devices,--voh-5{),p. 19-14,200-3e

[46]. W.B. Joyce and R.W. Dixon, "Analytic approximations for the Fermi energy of an ideal Feoni gas,''.Appl. Phys ..LetL,31,4Jp. 35.4-;).$6,-197'7.

[47]. M. Cahay, M. McLennan, S. Datta and M. Lundstrom, "Importance of space charge ,

- effects iil"tesonanHunneling-devices", Appl •.Phy&-LetL-vol.- 5O,-Jlc6-l-2,1-98-7.

[48]. F. Venturi, R. K. Smith, E. C. Sangiogri, M. R. Pinto, and B. Ricco, "A general purpose device$imulator _coupling Poisson_and-Monte _Carlo.1ransport with_applications-to-deep submicron MOSFETs," IEEE Trans. Computer-Aided Design, vol. 8, p. 360, 1989.

-{.4-9} . Z. Ren,l'hD--Thesis,flurdue- University, USA,200-1- -

[50]. S. Jallepalli, J. Bude, W.-K. Shih, M. R. Pinto, C. M. Maziar and A. F. Tasch, "Electron and hole_quantization-=d _their.impacLon __deep_Jmbmicron_silicon ..p---and--n-MQSFE"f chmacteristics," IEEE Trans. Electron Devices, vol. 44, pp. 297-302, 1997.

[51]. http://www:nanehulr.erg/nanemos-

[52]. J. Cai and C.-T. Sah, "Gate tunneling currents in ultrathin oxide metal-oxide silicon transistors," J.Appl. Phys., 89, pp. 2272-2285, 2001.

57

[53]. J;.M.Vogel, K.Z.Ahmed, B. Bornung, w:.K._Henson,-P..K.-McLarty,_.G.-LuGOvsky,-l=R.

Hau:>er and J.J. Wortman, "Modeled Tunnel Currents for High Dielectric Constant

I

Dlelectncs,"IEE£-:rFans~EleetronDeviGes, 4S,pp.-1350-135.4,-l.998.- -

[54]. J. Wang, M. Lundstrom and E. Polizzi, "A three-dimensional quantum simulation of i)ilicon nanowire transistors w.ith .the_effec1iye-mass.approximation," _LAppLYJz);s.-,-96, pp. 2192-2203, 2004.

[55].

:N.C

Greenham- and.R.H-. Friend,. "Semic(mdm:tel"--Device---P-h)'sics- of. Conjugated-- Polymers", Solid State Physics 49, ed. H. Ehremeich and F. Spaepen, Academic Press, New -¥ork,-l99!i.

[56}. C. Dekker, "Carbon Nanotubes as Molecular Quantum Wires," Phys. Today 52, pp. 22- 28";May, 1999;-

[57]. M.A. Reed, "Molecular-scale electronics," Proc. IEEE, 87, pp. 652--658, 1999.

[58]. ). Taylor,_H .. GuoandJ. Wang, "Ab-initiomodeling.oLquantuID transport-fJr-operties.of molecular electronic devices," Phys. Rev. B, 63, 245407, pp.l-13, 2001.

[59]. D.C. Langreth and J.W. Wilkins, "Theory of Spin Resonance in Dilute Magnetic Alloys,"

Phys. Rev. B, 6, pp.3189-3227, 1972.

58

Appendix A

A.12D meshgenel'ation-using-MA'fLAB- .

%==========================================================================

function mesh~dgmGs2d

%====~====================================================================

%mesh_dgmos2d - 2d mesh generator function for rectangular DGMOSFET

%This function is used in FEM solution of 2D Poisson equation

%

%Related parameters:

%---

%Lsd: dJ;.ain_or...source-J.-engt:ch

%Lg_top : gate length

%t top: top oxide thickness

%t-bot~ bottom oxide thickness

%t si: silicon thickness

%dx: x-grid spacing

%dy: y-grid spacing

%ns: no. of smaller grids

%

%Nn: number of nodes

%Ne: number of (triangular) elements

%x : x-coordinate of nodes (nexl)

%y : y-coordinate of nodes (nexl)

%te: connectivity matrix (3xne)

%Nb: no. of boundary points

%td: array of global. number of Nb's

%---7---

%---

global Lsd Lg_top Lg_bot t_top t_bot t_si dx dy ns dys global Lsda Lg_topa Lg_bota t_topa t_bota t sia

global Nn Ne Nx Ny Nb x y te td~row globF~ eps_top eps~bot eps_si-alpx alpy

%---

%Set up Nn,Ne,x,y:

%---~---

dys~dy/2;

~sd~round(Lsd/dx)*dx;

Lg_top~round(Lg_top/dx)*dx;

Lg_bot~round(Lg_bot/dx)*dx;

Lx~round((2*Lsd+Lg top)/dx)*dx;

t_top~round(t_top/dys)kdys7 t_bot~round(t_bot/dys)*dys;

t_si~round(t_si/dys)*dys;

Ly~ro\>nd.((t_top+t_si+t_bot) Idyl *dy;

%

Lsda-round(Lsd/dx);

Lg topa=round(Lg top/dx);

Lg=:bota~round( Lg=:bor/dx)., Nx~round(Lx/dx)+l

t_topa=2*ns+round((t_top-2*ns*dys)/dy);

t_bota~2*ns+round((t-bot-2*ns*dys)/dy);

59

t_sia~2*ns+round(lt si-2*ns*dys)/dy);

Ny~6*ns+round((Ly-6*ns*dys)/dy)+1 Nn=Nx*Ny

Ne~2':(Nx-l)*(Ny-l);

x=zeros (-Nh, -1).;

y=zeros(Nn,l);

for i=l:Nx

xcolli)~(i-l)*dx;

end

x=repmat(xcol',Ny,l);

fOI:-.j_~l:Ny __

if j<=ns+l

yrow(j)~(j-l)*dys;

elseif j>~(t_topa+l-ns+l)&j<~Jt_topa+l+ns) yrow(j)~yrow(j-l)+dys;

e~seif j>~(t_topa+t_sia+l-ns+l)&j<~(t_topa+t sia+l+ns) yrow(j)~yrow(j-l)+dys;

elseif j>-(-Ny--ns+-l-}&j<-Ny-- yrow(j)~yrowlj-l)+dys;

else

yrowJj )~yrow (j-1) +.dy_;

end end

yrow=yrow I;

yd=repma.t_(yrow, 1, Nx);

y=reshape {yd' 1Nn-,1)--i-

%---

%Set up teo

%---~---

te=zeros(3,Ne)i vel~[1;2_;Nx+l] ; ve2~ [2;Nx+z'-;Nx+-lj;_

for jj~l: (Ny-I)

for ii~1:2: (2*(Nx-l)) ee~(jj-l)*(2*(Nx-l))+ii;

if ii==l

te (:Ieel =vel;

te C=- 1_ee+ 1) =ve2i _ else

tel:,ee)~te(:,ee-2)+1;

te(:,ee+l)~te(:,ee-l)+l;

end end

.1vel=vel+Nx;

ve2=~e2+Nx;

end

%---

%Set up Nb,td:

%---

Nb~2*(Lg_topa+l);

td~tnp~[Lsda+l:Lsda+Lg_topa+lJ ';

(Nn- (Lsda'l-Lg_topa-'Fl)+1);-

td _bot~ [-INn'-(Lsda+Lg_ topa+ 1) +1) : INn- (Lsda+ 1) +1) ] ';

td~[td_top;td_bot];

60

Dalam dokumen Full Thesis .pdf - BUET (Halaman 63-72)

Dokumen terkait