• Tidak ada hasil yang ditemukan

Limitations and Recommendations for Future Study

Chapter 5: CONCLUSION AND RECOMENDATION

5.3 Limitations and Recommendations for Future Study

Several key limitations and recommendations for future studies are outlined below.

(a) A major limitation of this study is that PNC data coverage is low due to an instrumental failure. While it was planned to collect about 10 day-visits of PNC and PM2.5 data per site, covering summer and winter, PNC data collection in summer did not happen due to an instrumental failure. A condensation particle counter (CPC) was used to collect PNC measurements, which is a costly instrument. The CPC was obtained through a collaborative research work with Carnegie Mellon University. Once CPC failed, it was not possible to repair it due to COVID-19 pandemic and financial constraints. A future effort should collect data in summer and winter conditions. Also, it is recommended to collected 10-15 days of short-term data at each site covering a range of meteorological and temporal attributes to obtain a robust estimate of mean concentration. Also, a future study may consider collecting data at a greater number of sites.

(b) Low-cost sensor needs comprehensive local calibration under a range of environmental condition that was not possible in this study. The low-cost PM2.5 sensor used in this study was compared with the data from US Embassy PM2.5 monitor. A reasonable agreement was found. However, a comprehensive long-term colocation against a reference monitor is recommended in a future study.

(c) The scope of the study was limited within data collection and quantification of intra- urban spatial variability. Some effort is made to inferring important factors that drive the spatial patterns. Future study should put comprehensive effort in identifying various modifiable factors that drive the spatial patterns. This will help in pollution mitigation plan.

(d) The scope of the study was limited to sampling within Dhaka city. In general, the findings in this study may not represent the other metropolitan cities in Bangladesh. Future studies should conduct measurements in other cities to assess how this study's findings represent for other cities in Bangladesh.

References:

[1] Brauer, M.; Freedman, G.; Frostad, J.; van Donkelaar, A.; Martin, R. V.; Dentener, F.;

Dingenen, R. van; Estep, K.; Amini, H.; Apte, J. S.; Balakrishnan, K.; Barregard, L.;

Broday, D.; Feigin, V.; Ghosh, S.; Hopke, P. K.; Knibbs, L. D.; Kokubo, Y.; Liu, Y.;

Ma, S.; Morawska, L.; Sangrador, J. L. T.; Shaddick, G.; Anderson, H. R.; Vos, T.;

Forouzanfar, M. H.; Burnett, R. T. and Cohen, A. Ambient Air Pollution Exposure Estimation for the Global Burden of Disease. Environ. Sci. Technol. 2016, 50 (1), 79–

88. https://doi.org/10.1021/acs.est.5b03709 , 2013.

[2] Saha, P. K.; Zimmerman, N.; Malings, C.; Hauryliuk, A.; Li, Z.; Snell, L.; Subramanian, R.; Lipsky, E.; Apte, J. S.; Robinson, A. L. and Presto, A. A. Quantifying High- Resolution Spatial Variations and Local Source Impacts of Urban Ultrafine Particle Concentrations. Science Total Environment 655,473–481.

https://doi.org/10.1016/j.scitotenv.2018.11.197. 2019

[3] Hendriks, C., Kranenburg, R., Kuenen, J., van Gijlswijk, R., Wichink Kruit, R., Segers, A., Denier van der Gon, H., and Schaap, M. The origin of ambient particulate matter concentrations in the Netherlands. Atmospheric Environment, 69, 289-303. doi:

10.1016/j.atmosenv.2012.12.017, 2013.

[4] Liao, J., Zimmermann Jin, A., Chafe, Z. A., Pillarisetti, A., Yu, T., Shan, M., Yang, X., Li, H., Liu, G., and Smith, K. R. The impact of household cooking and heating with solid fuels on ambient PM2.5 in peri-urban Beijing. Atmospheric Environment, 165, 62-72.

doi: 10.1016/j.atmosenv.2017.05.053, 2017.

[5] Begum, B. A.; Hopke, and P. K. Ambient Air Quality in Dhaka Bangladesh over Two Decades: Impacts of Policy on Air Quality. Aerosol Air Qual. Res. 18 (7), 1910–1920.

https://doi.org/10.4209/aaqr.2017.11.0465, 2018.

[6] Safiur Rahman, M.; Khan, M. D. H.; Jolly, Y. N.; Kabir, J.; Akter, S. and Salam, A.

Assessing Risk to Human Health for Heavy Metal Contamination through Street Dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 660, 1610–1622.

https://doi.org/10.1016/j.scitotenv.2018.12.425, 2019.

[7] Alma Lorelei, J; Rahmana, M.M; Mazaheria, M; Thompsonb, H; Knibbsc, L.D;

Jeongd,C; Evansd, G; Neie, W; Dinge, A; Qiaof, L; Lif, L; Porting, H; Jarkko; Niemig, V; Timonenh, H; Luomai, K; Petäjäi, T; Kulmalai, M; Kowalskij, M; Petersj, A; Cyrysj, J; Ferrerok, L; Manigrassol, M; Avinom, P; Buonanon, G; Recheo, C; Querolo, X Beddowsp, D; Harrisonq, R.M; Sowlatr, M. H; Sioutasr, C and Morawskaa, L. Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other.https://doi.org/10.1016/j.envint.2019.05.021, 2019.

[8] Ketzel, M; Frohn, L. M; Christensen, J. H; Brandt, J; Massling, A; Andersen, C; Ulas Im; Jensen, S. S; Khan, J; Nielsen, O; Plejdrup, M. S; Manders, A; Van der Gon, H.G;

Kumar, P; and Nielsen, O. Modelling ultrafine particle number concentrations at address resolution in Denmark from 1979 to 2018 - Part 2: Local and street scale modelling and evaluation.https://doi.org/10.1016/j.atmosenv.2021.118633.

[9] Li, H. Z.; Gu, P.; Ye, Q.; Zimmerman, N.; Robinson, E. S.; Subramanian, R.; Apte, J.

S.;Robinson, A.L.and Presto, A. A.Spatially Dense Air Pollutant Sampling: Implications of Spatial Variability on the Representativeness of Stationary Air Pollutant Monitors.

Atmospheric Environ. X, 2, 100012. https://doi.org/10.1016/j.aeaoa.2019.100012, 2019 [10] Matte, T. D; Ross, Z; Kheirbek, I; Eisl, H; Johnson, S; Gorczynski, J. E; Kass, D;

Markowitz, S; Pezeshki, G. and Clougherty, J. E. Monitoring intraurban spatial patterns of multiple combustion air pollutants in New York City: Design and implementation Journal of Exposure Science & Environmental Epidemiology volume 23, pages223–

231, 2013.

[11] Malings, C.; Tanzer, R.; Hauryliuk, A.; Saha, P. K.; Robinson, A. L.; Presto, A. A. and Subramanian, R. Fine Particle Mass Monitoring with Low-Cost Sensors: Corrections and Long-Term Performance Evaluation. Aerosol Sci. Technol. 54 (2), 160–174.

https://doi.org/10.1080/02786826.2019.1623863, 2020.

[12] Zimmerman, N.; Presto, A. A.; Kumar, S. P. N.; Gu, J.; Hauryliuk, A.; Robinson, E. S.;

Robinson, A. L. and R. Subramanian. A Machine Learning Calibration Model Using Random Forests to Improve Sensor Performance for Lower-Cost Air Quality Monitoring. Atmos Meas Tech 2018, 11 (1), 291–313. https://doi.org/10.5194/amt-11- 291, 2018.

[13] Karner, A. A.; Eisinger, D. S. and Niemeier, D. A. Near-Roadway Air Quality:

Synthesizing the Findings from Real-World Data. Environ. Sci. Technol. 44 (14), 5334–

5344. https://doi.org/10.1021/es100008x, 2010.

[14] Ahmed, F., and Ishiga, H. Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atmos. Environ. 40, 3835–3844, 2010.

[15] Perez P, and Reyes J. Prediction of maximum of 24-h average of PM10 concentrations 30 h in advance in Santiago, Chile. Atmos Environ 36:4555–4561. doi:10.1016/S1352–

2310(02) 00419–3, 2002.

[16] Cohen, D. D. Characterization of atmospheric fine particle using IBA techniques. Nucl Instrum Methods 136:14–22. doi:10.1016/ S0168–583X (97)00658–7, 1998.

[17] Ahmed, F., and Ishiga, H. Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atmos. Environ. 40, 3835–3844, 2006.

[18] BRTA, Bangladesh road transport authority. Air pollution in Bangladesh. BRTA Associated With Greater Dhaka Metropolitan Area Integrated Transport Study, Working Paper, 2016.

[19] Hinds, W.C. Aerosol technology: properties, behavior, and measurement of airborne particles. New York: Wiley, 1999.

[20] Zimmerman, Naomi, Albert A. Presto, Sriniwasa P. N. Kumar, Jason Gu, Aliaksei 45 Hauryliuk, Ellis S. Robinson, Allen L. Robinson, and R. Subramanian. “A Machine Learning Calibration Model Using Random Forests to Improve Sensor Performance for Lower-Cost Air Quality Monitoring.” Atmospheric Measurement Techniques 11(1):291–313. doi: 10.5194/amt-11-291, 2018.

[21] Araujo, J. A. and Nel, A. E. Particulate Matter and Atherosclerosis: Role of Particle Size, Composition and Oxidative Stress. Part. Fibre Toxicol. 6 (1), 24.

https://doi.org/10.1186/1743-8977-6-24, 2009.

[22] Kwon, H.-S.; Ryu, M. H. and Carlsten, C. Ultrafine Particles: Unique Physicochemical Properties Relevant to Health and Disease. Exp. Mol. Med. 2020, 52 (3), 318–328.

https://doi.org/10.1038/s12276-020-0405-1.

[23] Baron, P.A., P. Kulkarni, and K. Willeke, Aerosol measurement: principles, techniques, and applications. Hoboken, N.J: Wiley, 2011.

[24] Pope CA 3rd, Schwartz J, and Ransom MR. Daily mortality and PM10 pollution in Utah Valley. Arch Environ Health 47:211–217, 1992.

[25] Dockery, D. W; Pope, C. A; Xu, X; Spengler, J. D; Ware, J. H; Fay, M. E; Ferris, B. G.

Jr; and Speizer, F. E. An association between air pollution and mortality in six US cities.

N Engl JMed 329:1753–1759, 1993.

[26] Anderson HR, Spix C, Medina S, Schouten JP, Castellsague J, Rossi G, Zmirou D, Touloumi G, Wojtyniak B, Ponka A, Bacharova L, Schwartz J, and Katsouyanni K. Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: Results from the APHEA project. Eur Respir J 10:1064–1071, 1997.

[27] Hankey, S., and Marshall, J.D. Land use regression models of on-road particulate air pollution (Particle Number, Black Carbon, PM2.5 and Particle Size) using mobile monitoring. Environ. Sci. Technol. 49, 9194–9202, Atmos. Res. 194, 1–16.

https://doi.org/10.1016/j.atmosres.2017.04.021, 2015.

[28] Steffens, J., Kimbrough, S., Baldauf, R., Isakov, V., Brown, R., Powell, A., and Deshmukh, P. Near-port air quality assessment utilizing a mobile measurement approach. Atmos. Pollut. Res. 8 (6), 1023–1030, 2017.

[29] Oberdörster G, Ferin J, Finkelstein G, Wade P, and Corson N. Increased pulmonary toxicity of ultrafine particles? II. Lung lavage studies. J Aerosol Sci 21:384–387, 1990.

[30] Ferin J, Oberdörster G, and Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6:535–542, 1992.

[31] Oberdörster G, Gelein RM, Ferin J, and Weiss B. Association of particulate air-pollution and acute mortality Involvement of ultrafine particles. Inhal Toxicol 7:111– 124, 1995.

[32] Seaton A, MacNee W, Donaldson K, and Godden D. Particulate air pollution and acute health effects. Lancet 345:176–178, 1995.

[33] Oberdörster G, Ferin J, Gelein R, Soderholm SC, and Finkelstein J. Role of the alveolar macrophage in lung injury: Studies with ultrafine particles. Environ Health Perspect 97:193, 1992.

[34] Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, and Stone V. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10, 2005.

[35] Araujo, J A, and Nel, A E. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Particle and Fibre Toxicology, vol. 6, no. 24, pp. 1- 19, 2009.

[36] Nicolas, P, Jocelyne, P, Michel, F, Sophie, G-C, Pascal, R, and Émilien, P. Oxidative stress and immunologic responses following a dietary exposure to PAHs in Mya 49 arenaria. Chem Cent J., vol. 2, no. 23, pp. 1-11, 2008.

[37] Nel, A. Atmosphere. Air pollution-related illness: effects of particles. Science, vol. 308, no. 5723, pp. 804-806, 2005.

[38] Wilson, M R, Lightbody, J H, Donaldson, K, Sales, J, and Stone, V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicology and Applied Pharmacology, vol. 184, no. 3, Nov 1, pp. 172-179, 2002.

[39] Elder, A C P, Gelein, R, Finkelstein, J N, Cox, C, and Oberdorster, G. Endotoxin priming affects the lung response to ultrafine particles and ozone in young and old rats. Inhalation Toxicology, vol. 12, no. s1, pp. 85- 98, 2000.

[40] Kittelson, D B. Engines and nanoparticles: A review. Journal of Aerosol Science, vol.

29, no. 5-6, pp. 575-588, 1998.

[41] Ibald-Mulli, A, Wichmann, H E, Kreyling, W, and Peters, A. Epidemiological evidence on health effects of ultrafine particles. Journal of Aerosol Medicine Deposition Clearance and Effects in the Lung, vol. 15, no. 2, pp. 189-201, 2002.

[42] Reponen, T, Grinshpun, S A, Trakumas, S, Martuzevicius, D, Wang, Z M, LeMasters, G, Lockey, J E, and Biswas, P. Concentration gradient patterns of aerosol particles near interstate highways in the Greater Cincinnati airshed. J Environ Monit, vol. 5, no. 4, Aug, pp. 557-62, 2003.

[43] Harris, S J, and Maricq, M M. The role of fragmentation in defining the signature size distribution of diesel soot. Journal of Aerosol Science, vol. 33, no. 6, pp. 935-942

,

2002.

[44] Kittelson, D B. Engines and nanoparticles: A review. Journal of Aerosol Science, vol.

29, no. 5-6, pp. 575-588, 1998.

[45] Sowlat, M. H.; Hasheminassab, S.; and Sioutas, C. Source Apportionment of Ambient Particle Number Concentrations in Central Los Angeles Using Positive Matrix Factorization (PMF). Atmospheric Chemistry, Physics, 16 (8), 4849–4866.

https://doi.org/10.5194/acp-16-4849, 2016.

[46] Posner, L. N. and Pandis, S. N. Sources of Ultrafine Particles in the Eastern United

States. 51 Atmos. Environ. 111, 103–112.

https://doi.org/10.1016/j.atmosenv.2015.03.033, 2015

[47] Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R. M.; Norford, L. and Britter, R. Ultrafine Particles in Cities. Environ. Int. 2014, 66, 1– 10. https://doi.org/10.1016/j.envint.2014.01.013.

[48] Zhang, K. M.; Wexler, A. S.; Zhu, Y. F.; Hinds, W. C.; and Sioutas, C. Evolution of Particle Number Distribution near Roadways. Part II: The ‘Road-to-Ambient’ Process.

Atmospheric. Environment. 38 (38), 6655–6665.

https://doi.org/10.1016/j.atmosenv.2004.06.044

,

2014.

[49] Saha, P. K.; Khlystov, A.; Snyder, M. G.; and Grieshop, A. P. Characterization of Air Pollutant Concentrations, Fleet Emission Factors, and Dispersion near a 34 North Carolina Interstate Freeway across Two Seasons. Atmos. Environ. 177, 143–153.

https://doi.org/10.1016/j.atmosenv.2018.01.019, 2004.

[50] Zhu, Y.; Hinds, W. C.; Kim, S.; Shen, S.; and Sioutas, C. Study of Ultrafine Particles near a Major Highway with Heavy-Duty Diesel Traffic. Atmos. Environ. 36 (27), 4323–4335. https://doi.org/10.1016/S1352-2310(02)00354-0, 2002.

[51] Urciuolo, M, Barone, A, D'Alessio, A, and Chirone, R. Fine and Ultrafine Particles Generated During Fluidized Bed Combustion of Different Solid Fuels. Environmental Engineering Science, vol. 25, no. 10, Dec, pp. 1399-1405

,

2008.

[52] Carbone, F, Beretta, F, and D'Anna, A. Multimodal ultrafine particles from pulverized coal combustion in a laboratory scale reactor. Combustion and Flame, vol. 157, no. 7, Jul, pp. 1290-1297

,

2010.

[53] Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., AdairRohani, H., and Amann, M. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475-483. doi: 10.1016/j.atmosenv.2015.08.087, 2015.

[54] Rao, P.S.; Kumar, A.; Ansari, M.F.; Pipalatkar, P. and Chakrabarti, T. Air Quality impact of sponge iron industries in central India. Bulletin of Environmental Contamination and Toxicology, 10.1007/s00128-008-9519-1, 2008.

[55] Kandpal, J.B.; Maheshwari, R.C. and Kandpal, T.C. Indoor Air Pollution From Domestic Cookstoves Using Coal, Kerosene and LPG. Energy Conversion and Management, 36, 1067-1072, 1995.

[56] Mishra, V. Effect of Indoor Air Pollution From Biomass Combustion on Prevalence of Asthma in the Elderly. Environmental Health Perspective, 111, 71-77, 2003.

[57] Cyrys, J., Pitz, M., Heinrich, J., Wichmann, H-E., and Peters, A., Spatial and temporal variation of particle number concentration in Augsburg, Germany. Science of the Total Environment, 401, 168-175, 2008.

[58] Kaur, S. Clark, R.D.R, Walsh, P.T., Arnold, S.J., Colvile, R.N., and Nieuwenhuijsen, M.J. Exposure visualization of ultrafine particle counts in a transportation microenvironment. Atmospheric Environment, 40, 386-398, 2006.

[59] Ketzel, M, Wåhlin, P., Kristensson, A., Swietlicki, E., Berkowicz, R., Nielsen, O., and Palmgren, F. Particle size distribution and particle mass measurements at urban, near- city and rural level in Copenhagen area and Southern Sweden. Atmospheric Chemistry and Physics, 4, 281-292, 2004.

[60] Buzorius, G., Hämeri, K., Pekkanen, J., and Kulmala, M. Spatial variation of aerosol number concentration in Helsinki city. Atmospheric Environment, 33, 553-565, 1999.

[61] Blanchard, C.L., Carr, E.L., Collins, J.F., Smith, T.B., Lehrman, D.E. and Michaels, H.M. Spatial representativeness and scales of transport during the 1995 integrated monitoring study in California's San Joaquin Valley. Atmospheric Environment, 33(29),4775-4786, 1999.

[62] Ito, K., Xue, N. and Thurston, G. Spatial variation of PM2.5 chemical species and source-apportioned mass concentrations in New York City. Atmospheric Environment, 38(31),5269-5282, 2004.

[63] Pinto, J.P., Lefohn, A.S. and Shadwick, D.S. Spatial variability of PM2.5 in urban areas in the United States. Journal of the Air & Waste Management Association, 54(4),440- 449

,

2004.

[64] Wilson, J.G., Kingham, S., Pearce, J. and Sturman, A.P. A review of intraurban variations in particulate air pollution: Implications for epidemiological research.

Atmospheric Environment, 39(34),6444-6462, 2005.

[65] Watson, J.G. and Chow, J.C. Estimating middle-, neighborhood-, and urban-scale contributions to elemental carbon in Mexico City with a rapid response aethalometer.

Journal of the Air & Waste Management Association, 51(11),1522-1528. 2001.

[66] Zhu, Y., et al. Concentration and size distribution of ultrafine particles near a major highway. Journal of the Air & Waste Management Association, 2002. 52(9): p. 1032, 1995.

[67] Holmes, N.S., et al. Spatial distribution of submicrometre particles and CO in an urban microscale environment. Atmospheric Environment, 39(22): p. 3977-3988, 2005.

[68] Morawska, L., Ristovski, Z., Jayaratne, E. R., Keogh, D. U., and Ling, X. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmospheric Environment, 42(35), 8113-8138. doi: 10.1016/j.atmosenv.2008.07.050, 2008.

[69] Knibbs, L. D., Cole-Hunter, T., and Morawska, L. A review of commuter exposure to ultrafine particles and its health effects. Atmospheric Environment, 45(16), 2611-2622.

doi: 10.1016/j.atmosenv.2011.02.065, 2011.

[70] Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R. M., Norford, L., and Britter, R. Ultrafine particles in cities. Environment International, 66, 1-10. doi:10.1016/j.envint.2014.01.013, 2014.

[71] Guerreiro, C. B. B.,Foltescu, V. and de Leeuw, F. Air quality status and trends in Europe.AtmosphericEnvironment,98,376 384.doi:10.1016/j.atmosenv.2014.09.017, 2014.

[72] Shi, Y., Matsunaga, T., Yamaguchi, Y., Li, Z., Gu, X., and Chen, X. Longterm trends and spatial patterns of satellite-retrieved PM2.5 concentrations in South and Southeast Asia from 1999 to 2014. Science of the Total Environment, 615, 177-186. doi:

10.1016/j.scitotenv.2017.09.241

, 2018.

[73] Buzorius, G., et al. Spatial variation of aerosol number concentration in Helsinki city.

Atmospheric Environment, 33(4): p. 553-565, 1999.

[74] Puustinen, A., et al. Spatial variation of particle number and mass over four European cities. Atmospheric Environment, 41(31): p. 6622-6636

,

2007.

[75] Cyrys, J., et al. Spatial and temporal variation of particle number concentration in Augsburg, Germany. Science of The Total Environment, 401(1-3): p. 168-175, 2008.

[76] Moore, K., Krudysz, M., Pakbin, P., Hudda, N., and Sioutas, C. Intra-community variability in total particle number concentrations in the San Pedro Harbor Area (Los Angeles, California). Aerosol Sci. Technol. 43 (6), 587–603, 2009.

[77] Hudda, N., et al. Inter-community variability in total particle number concentrations in the eastern Los Angeles air basin. Atmospheric Chemistry and Physics, 10(23): p.

11385- 11399, 2010.

[78] Canty, A., and Ripley, B. boot: Bootstrap R (S-Plus) Functions R package version 1.3- 20, 2017.

[79] Wongphatarakul, V., Friedlander, and S. K., Pinto, J.P. A Comparative Study of PM2.5

Ambient Aerosol Chemical Databases. Environmental Science and Technology, 1998, 3926- 3934, 1998.

[80] Wendling, Z., Emerson, J., Esty, D.C., Levy, M.A., and Sherbinin, A.D. Environmental Performance Index EPI. https://doi.org/10.13140/RG.2.2.34995.12328, 2018.

[81] World Health Organization (Ed.). Air quality guidelines: global update 2005:

particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization, Copenhagen, Denmark, 2006.

[82] Begum, B. A.; Hopke, and P. K. Ambient Air Quality in Dhaka Bangladesh over Two Decades: Impacts of Policy on Air Quality. Aerosol Air Qual. Res. 18 (7), 1910– 1920.

https://doi.org/10.4209/aaqr.2017.11.0465, 2018.

[83] Salam, A.; Bauer, H.; Kassin, K.; Mohammad Ullah, S.; and Puxbaum, H. Aerosol Chemical Characteristics of a Mega-City in Southeast Asia (Dhaka– Bangladesh).

Atmos. Environ. 37 (18), 2517–2528. https://doi.org/10.1016/S1352- 2310(03)00135- 3, 2003.

[84] Salam, A.; Hossain, T.; Siddique, M. N. A. and Alam, A. M. S. Characteristics of Atmospheric Trace Gases, Particulate Matter, and Heavy Metal Pollution in Dhaka, Bangladesh. Air Qual. Atmosphere Health, 1 (2), 101. https://doi.org/10.1007/s11869- 008-0017-8, 2008.

[85] Weagle, C. L.; Snider, G.; Li, C.; van Donkelaar, A.; Philip, S.; Bissonnette, P.; Burke, J.; Jackson, J.; Latimer, R.; Stone, E.; Abboud, I.; Akoshile, C.; Anh, N. X.; Brook, J.

R.; Cohen, A.; Dong, J.; Gibson, M. D.; Griffith, D.; He, K. B.; Holben, B. N.; Kahn, R.; Keller, C. A.; Kim, J. S.; Lagrosas, N.; Lestari, P.; Khian, Y. L.; Liu, Y.; Marais, E.

A.; Martins, J. V.; Misra, A.; Muliane, U.; Pratiwi, R.; Quel, E. J.; Salam, A.; Segev, L.; Tripathi, S. N.; Wang, C.; Zhang, Q.; Brauer, M.; Rudich, Y.; and Martin, R. V.

Global Sources of Fine Particulate Matter: Interpretation of PM2.5 Chemical Composition Observed by SPARTAN Using a Global Chemical Transport Model.

Environ. Sci. Technol. 52 (20), 11670–11681. https://doi.org/10.1021/acs.est.8b01658, 2018.

[86] Wongphatarakul, V., Friedlander, S. K., and Pinto, J.P. A Comparative Study of PM2.5

Ambient Aerosol Chemical Databases. Environmental Science and Technology, 1998, 3926- 3934, 1998.

[87] Massoud, Rawad, Alan. L. Shihadeh, Mohamed Roumié, Myriam Youness, Jocelyne Gerard, Nada Saliba, Rita Zaarour, Maher Abboud, Wehbeh Farah, and Najat Aoun Saliba. “Intraurban Variability of PM10 and PM2.5 in an Eastern Mediterranean City.”

Atmospheric Research 101(4):893–901. doi: 10.1016/j.atmosres.2011.05.019, 2011.

[88] Pakbin, P, Hudda, N, Cheung, K. L, Moore, K. F, and Sioutas, C. “Spatial and Temporal Variability of Coarse (PM 10−2.5) Particulate Matter Concentrations in the Los Angeles Area.” Aerosol Science and Technology 44(7):514–25. doi:

10.1080/02786821003749509, 2010.

[89] Kangasluoma, J. and Attoui, M. Review of sub-3nm condensation particle counters, calibrations, and cluster generation methods, Aerosol Science and Technology, 53:11, 1277-1310, DOI: 10.1080/02786826.2019.1654084, 2019.

[90] Begum BA, Kim E, Biswas SK, and Hopke PK. Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38:3025–3038.

doi:10.1016/j. atmosenv.2004.02.042, 2004.

[91] Chuersuwan N, Nimrat S, Lekphet S, and Kerdkumrai T. Levels and major sources of PM2.5 and PM10 in Bangkok Metropolitan Region. Environ Int 34:671–677. doi:

10.1016/j.envint.2007. 12.018, 2008.

[92] Harrison, R.M., and Jones, A.M. Multisite study of particle number concentrations in urban air. Environ. Sci. Technol. 39 (16), 6063–6070, 2005.

[93] Moore, K., Krudysz, M., Pakbin, P., Hudda, N., and Sioutas, C. Intra-community variability in total particle number concentrations in the San Pedro Harbor Area (Los Angeles, California). Aerosol Sci. Technol. 43 (6), 587–603, 2009.

[94] Krudysz, M., Moore, K., Geller, M., Sioutas, C., and Froines, J. Intra-community spatial variability of particulate matter size distributions in Southern California/Los Angeles. Atmos. Chem. Phys. 9 (3), 1061–1075, 2009.

[95] Hudda, N., Cheung, K., Moore, K.F., and Sioutas, C. Inter-community variability in total particle number concentrations in the eastern Los Angeles Air Basin. Atmos.

Chem. Phys. 10 (23), 11385–11399, 2010.

[96] Wang, Y., Hopke, P.K., and Utell, M.J. Urban-scale seasonal and spatial variability of ultrafine particle number concentrations. Water Air Soil Pollut. 223 (5), 2223–2235, 2012.

Dokumen terkait