Chapter 5 CONCLUSION AND RECOMMENDATION FOR FUTURE STUDY
5.2 Recommendation for Future Study
The following recommendations are suggested from the results and the methodology used in this study:
1. To safely dispose the effluent, recovery of materials and sludge disposal management should be studied.
2. Cost analysis of the performed research can be studied and the analysis can be compared with chemical precipitation at high pH range.
3. Optimizations studies were performed only for dosage, pH, and contact time for all the biosorbents. To get more optimum results, effect of temperature and particle size should be investigated.
4. As Chhatim leaves has shown great potentiality but there are very few works that has been done to evaluate the performance so far, greater care can be taken to study the adsorption properties more.
5. The green biosorbents can be treated chemically to have greater removal efficiency and study for optimization.
6. To get a profound knowledge about the removal process, thermodynamic and kinetic studies should be studied.
7. Study of Banana peel and peanut shell in ash form can be studied. Treating the Banana Peel and peanut shell chemically, can perform better in green form (Khan et al., 2017; Kothai et al., 2019).
8. Industry scale pilot study can be performed to evaluate the practical applicability of the concerned materials.
9. Column method test should also be applied to understand the removal process in industrial scale.
10. The applicability of the biosorbents to treat drinking water can be investigated.
11. Surface modification of adsorbent materials should be done before they are used to remove heavy metals
100
6
a. References
Abbasi, Z., Alikarami, M., Nezhad, E. R., Moradi, F., and Moradi, V. (2013). Adsorptive removal of Co2+ and Ni2+ by peels of banana from aqueous solution. Universal Journal of Chemistry, 1(3), 90-95. doi: 10.13189/ujc.2013.010303
Afrose, S. (2019). Modeling and kinetic studies of adsorption of azo dye onto laboratory prepared powder activated carbon. Department of Chemical Engineering. Dhaka: Bangladesh University of Engineering and Technology.
Ahmed, T., and Chowdhury, Z. U. (2016). Environmental burden of tanneries in Bangladesh. 36th Annual Conference of the International Association for Impact Assesment, (pp. 1-6).
Nagoya.
Alam, M. N.-E., Mia, M. A., Ahmad, F., and Rahman, M. M. (2018). Adsorption of chromium (Cr) from tannery wastewater using low-cost spent tea leaves adsorbent. Applied Water Science, 8(5), 129. Retrieved from https://doi.org/10.1007/s13201-018-0774-y
Alam, N. -E. (2018). Potential of spent tea leaves as adsorbent for the treatment of tannery effluent. Department of Civil Engineering. Dhaka: Bangladesh University of Engineering and Technology.
Alam, N. -E., Mia, M. A., Ahmad, F., and Rahman, M. M. (2020). An overview of chromium removal techniques from tannery effluent. Applied Water Science, 10(9), 205.
doi:10.1007/s13201-020-01286-0
Ali, A., Saeed, K., and Mabood, F. (2016). Removal of chromium (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent. Alexandria Engineering Journal, 55(3), 2933-2942. doi:10.1016/j.aej.2016.05.011
Ali, E. N. (2020). Removal of heavy metals from water and wastewater using Moringa oleifera. In M. A. Murillo-Tovar, Trace Elements in the Environment - New Approaches and Recent Advances (pp. 1-10). Open Access: IntechOpen. doi:10.5772/intechopen.89769
Ali, E. N., Alfarra, S. R., Yusoff, M., and Rahman, M. L. (2015). Environmentally friendly biosorbent from moringa oleifera leaves for water treatment. International Journal of Environmental Science and Development, 6(3), 165-169. doi:10.7763/IJESD.2015.V6.582 Ali, M. F., Naher, U. H., and Chowdhury, A. S. (2015). Investigation on physicochemical parameters of tannery effluent. Universal Journal of Environmental Research and Technology, 5(3), 122-130.
Altaf, M., Masood, F., and Malik, A. (2008). Impact of long-term application of treated tannery effluents on the emergence of resistance traits in Rhizobium sp. isolated from Trifolium alexandrinum. Turkish Journal of Biology, 32(1), 1-8.
Amanial, H. R. (2016). Physico chemical characterization of tannery effluent and its impact on the nearby river. Open Access Library Journal, 3(3), 1-8. doi: 10.4236/oalib.1102427
101 Amanial, H. R. (2016). Physico chemical characterization of tannery effluent and its impact on the
nearby river. Open Access Library Journal, 3(3), 1-8. doi:10.4236/oalib.1102427
American Public Health Association; American Water Works Association; Water Environment Federation. (2012). Standard methods for the examination of water and (22 ed.).
Washington DC: American Public Health Association; American Water Works Association; Water Environment Federation.
Annida, S., Inayati, and Setiawati, F. (2018). Chromium metal biosorption using peanut shell adsorbent. Equilibrium, 2(1), 7-15. Retrieved from http://equilibrium.ft.uns.ac.id
APHA. (1998). Standard methods for the examination of water and waste water. Washington D.C.: American Public Health Association.
APHA. (2012). Standard methods for the examination of water and wastewater (22 ed.).
Washington DC: American Public Health Association, American Water Works Association, Water Environment Federation.
Aravind, J., Sudha, G., Palanisamy, K., and Devisri, A. J. (2015). Equilibrium and kinetic study on chromium (VI) removal from simulated waste water using gooseberry seeds as a novel biosorbent. Global Journal of Environmental Science and Management, 1(3), 233-244.
doi:10.7508/gjesm.2015.03.006
Ayawei, N., Ebelegi, A. N., and Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017, 1-11. Retrieved from https://doi.org/10.1155/2017/3039817
Babel, S., and Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97(1-3), 219-243.
doi:10.1016/S0304-3894(02)00263-7
Bai, R. S., and Abraham, T. (2003). Studies on Cr(VI) adsorption desorption using immobilized fungal biomass. Bioresource Technology, 87(1), 17-26. doi:10.1016/S0960- 8524(02)00222-5
Bard, A. J., and Faulkner, L. R. (2001). Electrochemical methods: fundamentals and applications (2nd ed.). New York: John Wiley and Sons, Inc. Retrieved from https://www.academia.edu/15060550/Allen_J_Bard_Larry_R_Faulkner
Batool, F., Akbar, J., Iqbal, S., Noreen, S., and Bukhari, S. N. (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorganic Chemistry and Applications, 2018, 1- 11. doi:10.1155/2018/3463724
Bayuo, J., Pelig-Ba, K. B., and Abukari, M. A. (2019). Adsorptive removal of chromium(VI) from aqueous solution unto groundnut shell. Applied Water Science, 9(4), 107.
doi:10.1007/s13201-019-0987-8
Bello, O. S., Adegoke, K. A., and Akinyunni, O. O. (2015). Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Applied Water Science, 7(3), 1295 1305.
doi:10.1007/s13201-015-0345-4
Bhavya, K. S., Selvarani, J. A., Samrot, A., Thevarkattil, P., Mohamed, J., and Appalaraju, V. V.
(2019). Leather processing, its effects on environment and alternatives of chrome tanning.
102 International Journal Of Advanced Research In Engineering and Technology, 10(6), 69- 79. doi:10.34218/IJARET.10.6.2019.009
Bisht, R., Agarwal, M., and Singh, K. (2015). Removal of chromium from waster water using agricultural waste: a review. ISST Journal of Applied Chemistry, 6(1), 7-10. Retrieved from https://www.researchgate.net/publication/309538493_Removal_of_ChRomium_fRom_
WasteR_WateR_using_agRiCultuRal_Waste_a_RevieW
Brunauer, S., Emmett, P. H., and Teller, E. (1938). Adsorption of gases in multimolecular layers.
Journal of American Chemical Society, 60(2), 309-319. Retrieved from https://doi.org/10.1021/ja01269a023
Buljan, J., and Kral, I. (2011). Introduction to treatment of tannery effluents: what every tanner should know about effluent treatment. United Nations Industrial Development Organization, 1-69. Retrieved from https://www.unido.org/sites/default/files/2011- 11/Introduction_to_treatment_of_tannery_effluents_0.pdf
Busireddy, B. R. (2014). Adsorption of chromium (VI) on biomaterial. Journal of Chemical and
Pharmaceutical Sciences, 100-104. Retrieved from
file:///E:/Thesis/Thesis%20paper/factors.pdf
Chowdhury, M., Mostafa, M. G., Biswas, T. K., Mandal, A., and Saha, A. K. (2015).
Characterization of the effluents from leather processing industries. Environmental Processes, 2, 173-187. Retrieved from https://doi.org/10.1007/s40710-015-0065-7
Chowdhury, M., Mostafa, M. G., Biswas, T., Mandal, A., and Saha, A. K. (2015). Characterization of the effluents from leather processing industries. Environmental Processes volume, 2(1), 173-187. doi:10.1007/s40710-015-0065-7
Compound Interest. (2015, February 5). Compound Interest. Retrieved from compoundchem.com:
https://www.compoundchem.com/2015/02/05/irspectroscopy/
COTANCE; industriALL. (2012). Social and environmental report: the european leather industry. Belgium: SER III Social Dialogue Project. Retrieved from http://www.euroleather.com/socialreporting/
Crini, G., Lichtfouse, E., Wilson, L. D., and Morin-Crini, N. (2018). Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment.
In G. Crini, and E. Lichtfouse, Green Adsorbents for Pollutant Removal: Fundamentals and Design (Vol. 18, pp. 23-71). Open Library: Springer, Cham. doi:10.1007/978-3-319- 92111-2_2
Darge, A., and Mane, S. J. (2013). Treatment of industrial wastewater by using banana peels and fish scales. International Journal of Science and Research, 4(7), 600-604. Retrieved from https://www.ijsr.net/archive/v4i7/SUB156367.pdf
Datsko, T. I., Zelentsov, V. I., and Dvornikova, E. E. (2011). Physicochemical and adsorption- structural properties of diatomite modified with aluminum compounds. Surface Engineering and Applied Electrochemistry, 47(6), 530-539.
doi:10.3103/S1068375511060081
103 Davis, T. A., Volesky, B., and Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37(18), 4311-4330. Retrieved from https://doi.org/10.1016/S0043-1354(03)00293-8
Duraisamy, R., Mechoro, M., Seda, T., and Khan, M. A. (2020). Potential of Mangifera indica activated carbon for removal of chromium and iron under a Creative Commons Attribution
(CC-BY) 4.0 license. Cogent Engineering, 7(1), 1-17.
doi:10.1080/23311916.2020.1813237
DurgaPrasad, C., Krishna, P. S., and Srinivas, C. (2012). Equilibrium studies on biosorption of chromium on Psidium guajava leaves powder. Journal of Chemical and Pharmaceutical Research, 4(4), 1868-1879. Retrieved from https://www.jocpr.com/articles/equilibrium- studies-on-biosorption-of-chromium-on-psidium-guajava-leaves-powder.pdf
Emongor, V., E., N., B., K., I., K., S., S., and S., K. (2005). Pollution Indicators in Gaborone industrial effluent. Journal of Applied Sciences, 5(1), 147-150. doi:
10.3923/jas.2005.147.150
Esmaeili, A., Mesdaghinia, A., and Vazirinejad, R. (2005). Chromium (III) removal and recovery from tannery wastewater by precipitation process. American Journal of Applied Sciences,
2(10), 1471-1473. Retrieved from
https://www.researchgate.net/publication/284042080_Chromium_III_Removal_and_Rec overy_from_Tannery_Wastewater_by_Precipitation_Process
Fahey, J. (2005). Moringa oleifera: a review of the medical evidence for Its nutritional, therapeutic, and prophylactic properties. Part 1. Trees for Life Journal, 1(5), 1-15.
doi:10.1201/9781420039078.ch12
Gadd, G. M. (2008). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13 - 28. doi:10.1002/jctb.1999
Gain, P., and Moral, S. (1999). Leather industry: environmental pollution and mitigation measures. Dhaka: Society for Environment and Human Development.
Geremew, B. (2017). A review on elimination of heavy metals from wastewater using agricultural wastes as adsorbents. Science Journal of Analytical Chemistry, 5(5), 72-25.
doi:10.11648/j.sjac.20170505.12
Gessesse, A., Mulaa, F., Lyantagaye, S. L., Nyina-Wamwiza, L., Mattiasson, B., and Pandey, A.
(2011). Industrial enzymes for sustainable bio-economy: large scale production and application in industry, environment, and agriculture in eastern Africa. International Livestock Research Institute, 1-38. Retrieved from https://www.researchgate.net/publication/268063448
Goffer, Z. (2007). Archaeological chemistry (2nd ed.). Hoboken, New Jersey, USA: John Wiley and Sons.
Gopalakrishnan, S., Kannadasan, T., Velmurugan, S., Muthu, S., and Kumar, P. V. (2013).
Biosorption of chromium(VI) from industrial effluent using neem leaf adsorbent. Research Journal of Chemical Sciences, 3(4), 48-53. Retrieved from http://www.isca.in/rjcs/Archives/v3/i4/7.ISCA-RJCS-2013-031.pdf
104 Gupta, V. K., and Rastogi, A. (2008). Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. Journal of Hazardous Materials, 154(1-3), 347-354. doi:https://doi.org/10.1016/j.jhazmat.2007.10.032
Hall, K. R., Eagleton, L. C., Acrivos, A., and Vermeulen, T. (1966). Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern Conditions. Industrial and Engineering Chemistry Fundamentals, 5(2), 212-223. Retrieved from https://doi.org/10.1021/i160018a011
Hashem, M. A., Momen, M. A., Hasan, M., Nur-A-Tomal, M. S., and Sheikh, M. H. (2018).
Chromium removal from tannery wastewater using Syzygium cumini bark adsorbent.
International Journal of Environmental Science and Technology, 16, 1395-1404. Retrieved from https://doi.org/10.1007/s13762-018-1714-y
Hintermeyer, B. H., Lacour, N. A., Padilla, A. P., and Tavani, E. L. (2008). Separation of the chromium(III) present in a tanning wastewater by means of precipitation, reverse osmosis and adsorption. Latin American applied research Pesquisa aplicada latino americana = Investigaci n aplicada latinoamericana, 38(1), 63-71. Retrieved from https://www.researchgate.net/publication/262547324_Separation_of_the_chromiumIII_pr esent_in_a_tanning_wastewater_by_means_of_precipitation_reverse_osmosis_and_adsor ption
Hlihor, R., and Gavrilescu, M. (2009). Removal of some environmentally relevant heavy metals using low-cost natural sorbents. Environmental Engineering and Management Journal, 8(2), 353-372. doi: 10.30638/eemj.2009.051
Hosen, M., Rahaman, A., Hena, M. A., Hasan, M. M., Naher, U. H., and Moniruzzaman, M.
(2017). Removal of chromium from tannery effluent using plant bark and leaf. Energy and
Environment Focus, 6, 1-6. Retrieved from
https://www.researchgate.net/publication/321434102
Hossain, M. M., Abdulla, F., and Majumder, A. (2016). Forecasting of banana production in Bangladesh. American Journal of Agricultural and Biological Science, 11(2), 93-99.
doi:10.3844/ajabssp.2016.93.99
Hu, J., Chen, G., and M.C.Lo, I. (2005). Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research, 39(18), 4528-4536.
doi:https://doi.org/10.1016/j.watres.2005.05.051
Huq, S. I. (1998). Critical environmental issues relating to tanning industries in Bangladesh.
Australian Centre for International Agricultural Research Processing, (pp. 22-28).
Igwe, J., and Abia, A. (2007). Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob.
Eclética Química, 32(1), 33-42. doi:10.1590/S0100-46702007000100005
Jain, M., Garg, V., and Kadirvelu, K. (2009). Chromium(VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste. Journal of Hazardous Materials, 162, 365-372.
doi:10.1016/j.jhazmat.2008.05.048
Jimoh, A., Abdulkareem, A. S., Afolabi, A. S., and Micheal, O. (2013). Development of adsorbent from banana Peel for wastewater treatment. Applied Mechanics and Materials, 248, 310- 315. doi:10.4028/www.scientific.net/AMM.248.310
105 Kanagaraj, J., chinnaraj, V. k., Babu, N. K., and Sayeed, S. (2006). Solid wastes generation in the leather industry and its utilization for cleaner environment. Journal of Scientific and Industrial Research, 65, 541-548. doi:10.1002/chin.200649273
Kanwal, F., Rehman, R., Samson, S., and Anwar, J. (2013). Isothermal investigation of copper(II) and nickel(II) adsorption from water by novel synthesized polyaniline composites with Polyalthia longifolia and Alastonia scholaris dried leaves. Asian Journal of Chemistry, 25(16), 9013-9019. doi:10.14233/ajchem.2013.14968
Khan, A., Naqvi, H. J., Afzal, S., Jabeen, S., Iqbal, M., and Riaz, I. (2017). Efficiency enhancement of banana peel for waste water treatment through chemical adsorption. Proceedings of the Pakistan Academy of Sciences, 54(3), 329-335. Retrieved from https://www.paspk.org/wp- content/uploads/2017/09/Ef%EF%AC%81ciency-Enhancement-of-Banana.pdf
Kobya, M. (2004). Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: Kinetic and equilibrium studies. Bioresource Technology, 91(3), 317- 321. doi:10.1016/j.biortech.2003.07.001
Kothai, P., Meena, A., Meenaloshini, E., Revathy, A., and Kumar, N. V. (2019). Treatment of tannery effluent using groundnut shells. International Research Journal of Engineering
and Technology, 6(3), 2440-2447. Retrieved from
https://www.irjet.net/archives/V6/i3/IRJET-V6I3474.pdf
Ku, Y., and Peters, R. W. (1986). The effect of weak chelating agents on the removal of heavy metals by precipitation processes. Environmental Progress, 5(3), 147-153. Retrieved from https://doi.org/10.1002/ep.670050307
Lata, S., Singh, P. K., and Samadder, S. R. (2015). Regeneration of adsorbents and recovery of heavy metals: a review. International journal of Environmental Science and Technology, 12(4), 1461-1478. doi:10.1007/s13762-014-0714-9
López-Téllez, G., Barrera-Díaz, C. E., Balderas-Hernández, P., Roa-Morales, G., and Bilyeu, B.
(2011). Emoval of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chemical Engineering Journal, 173(2), 480 485.
doi:10.1016/j.cej.2011.08.018
Mahlangu, J. M., Simate, G. S., and Beer, M. d. (2018). Adsorption of Mn2+ from the acid mine drainage using banana peel. International Journal of Water and Wastewater Treatment, 4(1), 1-9. doi:dx.doi.org/10.16966/2381-5299.153
Mamun, A. A. (2018). Removal of hexavalent chromium from tannery wastewater by coprecipitation with ferrihydrite and sulfate green rust: mechanism elucidation and removal optimization. Japan: Waseda University. Retrieved from https://core.ac.uk/download/pdf/161813244.pdf
Massie, B., Sanders, T. H., and Dean, L. O. (2015). Removal of heavy metal contamination from peanut skin extracts by waste biomass adsorption. Journal of Food Process Engineering, 38(6), 555-561. doi:10.1111/jfpe.12185
Mella, B., Glanert, A., and Mariliz, G. (2013). Removal of chromium from tanning wastewater by chemical precipitation and electrocoagulation. (pp. 1-12). Istanbul: International Union of Leather Technologists and Chemists Societies. Retrieved from https://www.researchgate.net/publication/301727346
106 MetcalfandEddy, I. (2003). Wastewater engineering : treatment and reuse (4th ed.). New York:
McGraw-Hill Education.
Ministry of Commerce. (2015-2018). Export policy. Dhaka: Government of the People's Republic of Bangladesh, Bangladesh Secretariate.
Ministry of Commerce. (2018-2019). Export promotion bureau. Dhaka: Government of the People's Republic of Bangladesh.
Ministry of Environment and Forest. (1995). The environmental conservation act. Dhaka:
Ministry of Environment and Forest. (1997). Inland surface water in Bangladesh. Dhaka:
Government of the People's Republic of Bangladesh.
Ministry of Environment and Forest. (1997). The environmental conservation rules. Dhaka:
Mondal, N. K., and Kar, S. (2018). Potentiality of banana peel for removal of Congo red dye from aqueous solution: isotherm, kinetics and thermodynamics studies. Applied Water Science, 8(6), 157. doi:10.1007/s13201-018-0811-x
Muriuki, C. W. (2015). Evaluation of banana peels, pumice and charcoal potential to adsorb chromium ions from tannery wastewater. Environmental Engineering and Management.
Kenya: Jomo Kenyatta University of Agriculture and Technology. Retrieved from http://ir.jkuat.ac.ke/bitstream/handle/123456789/2059/%2CMuriuki%2C%20Cecilia%20 Wangechi-Msc%20Environment%20eng.%20managt-
2015.pdf?sequence=1andisAllowed=y
Naat, J. N., Lapailaka, T., Sabarudin, A., and Tjahjanto, R. T. (2018). Synthesis and characterization of chitosan-silica hybrid adsorbent from the extraction of Timor-east nusa Tenggara island silica and its application to adsorption of copper(ii) ion. Rasayan Journal of Chemistry, 11(4), 1467-1476. doi:10.31788/RJC.2018.1144055
Nag, S., Abhijit, M., Mishra, U., Mishra, U., and Das, S. D. (2016). Removal of chromium (VI) from aqueous solution in continuous flow column using Jackfruit leaf as bio-adsorbent.
Research Journal of Chemistry and Environment, 1-24. Retrieved from https://www.researchgate.net/publication/311265694
Naher, U. H., Islam, M. R., Mia, M. A., and Ali, M. F. (2018). Challenges and prospects of tannery by-product industries (glue, gelatin, poultry and fish feed industries) in Bangladesh.
International Journal of Science, Engineering and Technology Research, 7(12), 837-841.
Retrieved from
https://www.researchgate.net/publication/337856918_Challenges_and_Prospects_of_Tan nery_By-
product_Industries_Glue_Gelatin_Poultry_and_Fish_Feed_Industries_in_Bangladesh Nair, A. D., Hansdah, K., Dhal, B., Mehta, K. D., and Pandey, B. D. (2012). Bioremoval of
chromium (iii) from model tanning effluent by novel microbial isolate. International journal of metallurgical engineering, 1(2), 12-16. doi:10.5923/j.ijmee.20120102.01 Nimibofa, A., Ebelegi, A., and Donbebe, W. (2017). Modelling and Interpretation of adsorption
isotherms. Journal of Chemistry, 2017, 1-11. doi:10.1155/2017/3039817
107 Oliveira, H. (2012). Chromium as an environmental pollutant: insights on induced plant toxicity.
Journal of Botany, 2012, 1-8. doi:10.1155/2012/375843 Ozacar, M., and
solutions. Journal of Hazardous Materials, 98(1-3), 211-224. doi:10.1016/S0304- 3894(02)00358-8
Paul, H., Antunes, A., Covington, A., Evans, P., and Phillips, P. (2013). Towards zero solid waste:
utilising tannery waste as a protein source for poultry feed. The 28th International Conference on Solid Waste Technology and Management (pp. 1-13). Philadelphia: The Journal of Solid Waste Technology and Management. Retrieved from http://nectar.northampton.ac.uk/id/eprint/5238
Payel, S., Sarker, M., and Hashem, M. A. (2018). Banana rachis charcoal to remove chromium from tannery wastewater. 4th International Conference on Civil Engineering for Sustainable Development (pp. 1-8). Khulna: KUET.
Pehlivan, E., and Altun, T. (2008). Biosorption of chromium (VI) ion from aqueous solutions using walnut, hazelnut and almond shell. Journal of Hazardous Materials, 155(1-2), 378 384.
doi:10.1016/j.jhazmat.2007.11.071
Pillai, J. (1997). Flocculants and coagulants: the keys to water and waste management in aggregate
production. Nalco, 1-6. Retrieved from
https://aniq.org.mx/pqta/pdf/Flocculants%20and%20Coagulants%20NALCO%20(LIT).p df
Priya, P. G., Ramamurthi, V., and Anand, P. (2011). Degradation studies of tannery effluents using electro flotation technique. Journal of Chemical Engineering and Process Technology, 2(1), 1-4. doi:10.4172/2157-7048.1000104
Rahimizadeh, M., and Liaghat, A. (2015). Biosorbents for adsorption of heavy metals: A review.
International Conference on Environmental Science, Engineering and Technologies (pp.
1-13). Tehran: University of Tehran. Retrieved from
https://www.researchgate.net/publication/276887182_Biosorbents_for_adsorption_of_he avy_metals_A_review
Rahman, M. A. (2014). Use of activated carbon from date seeds to treat textile effluent.
Department of Civil Engineering. Dhaka: Bangladesh University of Engineering and Technology.
Rahman, P. M., and Bhattacharya, D. D. (2017). State of the Bangladesh economy in FY2016-17.
Dhaka: Centre for Policy Dialogue. Retrieved from http://cpd.org.bd/wp- content/uploads/2017/01/state-of-the-bangladesh-economy-in-fy2016-17-first-
reading.pdf
Raihan, M. M., Hosen, M. R., and Rahaman, M. A. (2017). Reducing of chromium intensity of tannery effluent by using low-cost adsorbents. European Academic Research, 4(10), 8286-
8294. Retrieved from
https://www.researchgate.net/publication/333646523_Reducing_of_chromium_intensity_
of_tannery_effluent_by_using_low-cost_adsorbents
108 Rashed, M. N. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater. In M. N. Rashed, Organic Pollutants: Monitoring, Risk and Treatment (pp.
167-194). Aswan: IntechOpen. doi:10.5772/54048
Rathinam, A., Madhan, B., Rao, J. R., Nair, B. U., and Ramasami, T. (2004). Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse.
Environmental Science and Technology, 38(1), 300-306. doi: 10.1021/es034427s
Razzaque, D. A., Eusuf, D. M., Khaleque, M. A., Bhuiyan, M. I., and Rahman, D. (2019).
Promoting decent work and acceptable working conditions in the tannery sector in bangladesh: tannery sector and its relocation. Research and Policy Integration for Development, 1-42. Retrieved from https://rapidbd.org/wp- content/uploads/2020/05/Tannery-Post-Relocation.pdf
Rehman, R., Anwar, J., Mahmud, T., Salman, M., and Mehboob, S. (2011). Optimization of operational conditions for batchwise biosorption of chromium (vi) using chemically treated Alstonia scholaris leaves as biosorbent. Journal- Chemical Society of Pakistan, 34(2), 292-
298. Retrieved from
https://www.researchgate.net/publication/232608529_Optimization_of_Operational_Con ditions_for_Batchwise_Biosorption_of_Chromium_VI_Using_Chemically_Treated_Alst onia_scholaris_Leaves_as_Biosorbent
Rehman, R., Anwar, J., Mahmud, T., Salman, M., and Mehboob, S. (2012). Optimization of Operational Conditions for Batchwise Biosorption of Chromium (VI) Using Chemically Treated Alstonia scholaris Leaves as Biosorbent. Journal- Chemical Society of Pakistan,
34(2), 292-298. Retrieved from
https://www.researchgate.net/publication/232608529_Optimization_of_Operational_Con ditions_for_Batchwise_Biosorption_of_Chromium_VI_Using_Chemically_Treated_Alst onia_scholaris_Leaves_as_Biosorbent
Sadasivam, S., Bharathi, S., Nithyanandhi, D., and Subburam, V. (2000). Biosorption of toxic heavy metals from aqueous solutions. Bioresource Technology, 75(2), 163-165.
doi:10.1016/S0960-8524(00)00021-3
Sahmoune, M. N., Louhab, K., and BoukhiarA. (2009). Biosorption of Cr (III) from aqueous solutions using bacterium biomass Streptomyces rimosus. International Journal of Environmental Research, 3(2), 229-238. doi:10.22059/IJER.2009.50
Sarin, V., and Pant, K. (2006). Removal of chromium from industrial waste by using Eucalyptus bark. Bioresource Technology, 97(1), 15-20. doi:10.1016/j.biortech.2005.02.010
Sayago, U. F., Castro, Y. P., Rivera, L. R., and Mariaca, A. G. (2020). Estimation of equilibrium times and maximum capacity of adsorption of heavy metals by E. crassipes (review).
Environmental Monitoring and Assessment volume, 192, 141. Retrieved from https://doi.org/10.1007/s10661-019-8032-9
Sekaran, G., Swarnalatha, S., and Dandaiah, S. (2007). Solid waste management in leather sector.
International Journal on Design and Manufacturing Technologies, 1(1), 47-52.
doi:10.18000/ijodam.70008
Senthilkumaar, S., Kalaamani, P., and Subburaam, C. V. (2006). Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree. Journal