• Tidak ada hasil yang ditemukan

মডেল টেস্ট পরীক্ষা ( অর্ধ-বার্ষিক পর্বের)

N/A
N/A
Protected

Academic year: 2023

Membagikan "মডেল টেস্ট পরীক্ষা ( অর্ধ-বার্ষিক পর্বের)"

Copied!
6
0
0

Teks penuh

(1)

w`bvRcyi Kv‡j±‡iU ¯‹zj GÛ K‡jR

cvV cwiKíbv-2016

‡kÖwY t PZy_©

evsjv cÖ‡kœi aviv I gvbe›Ub t

*cÖ`Ë Aby‡”Q`/KweZvsk co Ges 1, 2, 3, 4 I 5 bs cÖ‡kœi DËi `vI (cvV¨eB ewnf©~Z ) t

1. mwVK DËiwU DËic‡Î wjL t (5wU ) 1 X 5 =05

2. k~b¨¯’vb c~iY t 1 X 5 =05

3. hy³eY©¸‡jv †f‡O †`LvI Ges cÖwZwU hy³eY© w`‡q GKwU K‡i evK¨ MVb t 2 X 5 =10

4. cÖkœ¸‡jvi DËi wjLb t 3 X5=15

*cÖ`Ë Aby‡”Q`/KweZvsk c‡o 6, 7, 8 I 9 bs µwg‡Ki cÖkœ¸‡jvi DËi †jL ( cvV¨eB †_‡K ) t

5. Av‡e`b cÎ / wPwV wjLb t 05

6. mwVK DËiwU DËic‡Î †jL t 05

7. wb‡Pi cÖkœ¸‡jvi ms‡¶‡c DËi wjLb| 1+2+2=5 8. k㸇jvi A_© wjLb t 05

9. Aby‡”Q`/KweZvs‡ki mvivsk †jL t 05

10.weivg wPý t 05

11.wecixZ kã /mgv_©K kã t 05

12.GK K_vq cÖKvk / wµqvc‡`i PwjZ iƒc t 05

13.(K) KweZvi PiY¸‡jv mvwR‡q †jL t 06

(L) KweZvskUzKz †Kvb KweZvi Ask ? 01

(M) KweZvwUi Kwei bvg ? 01

(N) KweZvsk †_‡K (1/2 wU ) cÖkœ 02

14.dig c~iY t 05 15.iPbv wjLb ( 200 k‡ãi g‡a¨ - ms‡KZ ev Bw½Z †`qv _vK‡e ) t 10

‡gvU = 100

g‡Wj †U÷ cixÿv ( Aa©-evwl©K c‡e©i)

M`¨vsk t (1) evsjv‡`‡ki cÖK…wZ, (2) evsjvi †LvKv, (3) †gvevBj †dvb, (4) evIqvwj‡`i Mí, (5) cvwLi Rb¨, (6) Ny‡i Avwm †mvbviMvuI|

c`¨vsk t (1) gyw³i Qov, (2) Av‡evj-Zv‡evj, (3) gv |

e¨vKiY t (1) e¨vKiY, (2) fvlv, (3) eY©, (4) kã, (5) hy³eY©, (6) wecixZ kã, (7) c`, (8) weivgwPý, (9) GKK_vq cÖKvk, (10) cÖwZkã †evW… eB ), (11) wµqvc‡`i PwjZ iƒc|

wPwV I `iLv¯Í t(1) bZzb †kÖwYi eB †Kbvi Rb¨ cuvPkZ UvKv †P‡q evevi Kv‡Q cÎ

†jL|(2) †Zvgvi Rxe‡bi GKwU ¯§ibxq w`‡bi eY©bv w`‡q eÜzi Kv‡Q wPwV †jL|(3) Zzwg Amy¯’ _vKvi Kvi‡b wZbw`b ¯‹z‡j Avm‡Z cviwb| D³ wZbw`‡bi QzwU †P‡q Aa¨‡ÿi Kv‡Q GKLvbv `iLv¯Í wjL|(4) webv †eZ‡b Aa¨q‡bi Rb¨ Aa¨‡ÿi wbKU GKwU `iLv¯Í wjL|

iPbv t (1) cvwLi RMr, (2) †gvevBj †dvb, (3) †Zvgvi gv, (4) Ny‡i Avwm

†mvbviMuvI|

Aa©-evwl©K cixÿv

M`¨vsk t (1) eo ivRv †QvU ivRv, (2) AvR‡K Avgvi QzwU PvB, (3) gnxqmx

†iv‡Kqv, (4) cvnvocyi|

c`¨vsk t (1) cvjwKi Mvb, (2) †bgšÍbœ, (3) gv|

e¨vKiY t (1) wµqvi Kvj, (2) mwÜ, (3) ePb, (4) wj½u, (5) c` cwieZ©b, (6) m‡gv”PvwiZ kã, (7) hy³eY©, (8) wecixZ kã, (9) weivgwPý, (10) GKK_vq cÖKvk(‡evW© eB), (11) dig c~iY, (12) wµqvc‡`i PwjZiƒc|

wPwV I `iLv¯Í t (1) cixÿvi djvd‡ji msev` Rvwb‡q wcZvi wbKU GKwU cÎ wjL|(2) †Zvgvi we`¨vj‡qi evwl©K µxov Abyôv‡bi eY©bv w`‡q †Zvgvi eÜzi wbKU GKwU cÎ wjL|(3) †Zvgvi eo †ev‡bi weevn Dcj‡ÿ wZbw`‡bi AwMÖg QzwU †P‡q Aa¨‡ÿi wbKU GKLvbv `iLv¯Í wjL|(4) we`¨vjq †_‡K QvocÎ cvIqvi Rb¨ cÖavb wkÿ‡Ki wbKU GKLvbv Av‡e`b cÎ wjL|

iPbv t (1) Avgv‡`i we`¨vjq, (2) evsjv‡`‡ki RvZxq dzj, (3) †Zvgvi wcÖq †Ljv, (4) GKwU HwZnvwmK ¯’vb|

evwl©K cixÿv

M`¨vsk t (1) exi‡kÖ‡ôi exiMv_v, (2) nvZ ay‡q bvI, (3) cvVvb gyjy‡K, (4) wjwci Mí|

(2)

c`¨vsk t (1) †gv‡`i evsjv fvlv, (2) KvRjv w`w`, (3) exi cyiæl|

e¨vKiY t (1) KviK, (2) evK¨, (3) fvlv, (4) wj½u cwieZ©b, (5) ePb cwieZ©b, (6) cÖwZkã, (7) hy³eY©, (8) GKK_vq cÖKvk, (9) m‡gv”PvwiZ kã, (10) hwZwPý, (11) dig c~iY, (12) wµqvc‡`i PwjZiƒc|

wPwV I `iLv¯Í t

(1) GKwU wPwoqvLvbv †`Lvi AwfÁZvi K_v Rvwb‡q †Zvgvi eÜzi wbKU GKLvbv cÎ wjL|(2) cixÿv †k‡l Zzwg Kxfv‡e mgq KvUv‡Z PvI, Zv Rvwb‡q eÜzi Kv‡Q GKwU cÎ wjL|(3) †Ljv †`Lvi Rb¨ QzwU †P‡q †Zvgvi we`¨vj‡qi cÖavb wkÿ‡Ki Kv‡Q GKwU `iLv¯Í wjL|(4) wej‡¤^ †eZb cwi‡kv‡a Rwigvbv gIKz‡ci Rb¨

Aa¨‡ÿi wbKU Av‡e`b cÎ wjL|

iPbv t (1) Avgv‡`i GB evsjv‡`k, (2) Kw¤úDUvi, (3) GKRb exi‡kÖô, (4) gnxqmx †iv‡Kqv|

cÖv_wgK MwYZ cÖ‡kœi aviv I gvbe›Ub t

1. mwVK DËiwU DËic‡Î wjL t (24wU ) 1 X 24 =24 2. GKK_vq DËi wjL (mswÿß cÖkœ) t 1 X 10 =10 3. Pvi cÖwµqv m¤úwK©Z ( †hvM¨ZvwfwËK ) t 2 X 4 =08

A_ev,

Pvi cÖwµqv m¤úwK©Z ( †hvM¨ZvwfwËK ) t 2 X 4 =08 4. mnR mgm¨v(†hvM¨ZvwfwËK ) t 2 X 4 =08

A_ev,

mnR mgm¨v(†hvM¨ZvwfwËK ) t 2 X 4 =08

5. ¸bbxqK I ¸wYZK t 08

A_ev,

¸bbxqK I ¸wYZK t 08

6. mvaviY fMœvsk t 08

A_ev,

mvaviY fMœvsk t 08

7. `kwgK fMœvsk t 08

A_ev,

`kwgK fMœvsk t 08

8. cwigvc t 08

A_ev,

mgq t 08

9. cwigvc m¤úwK©Z ( †hvM¨ZvwfwËK ) t 2 X 4 =08 A_ev,

mgq m¤úwK©Z (†hvM¨ZvwfwËK ) t 2 X 4 =08 10.R¨vwgwZ t

(K) wPÎ m¤úwK©Z t 04

(L) msÁv (wZbwUi g‡a¨ `yBwU ) t 3 X 2 =06 ‡gvU = 100

(3)

g‡Wj †U÷ cixÿv ( Aa©-evwl©K c‡e©i)

(1) Mbbv, (2) †hvM I we‡qvM (2K+2L), (3) ¸Y, (4) fvM, (5) mnR mgm¨v, (6) ¸bbxqK I ¸wYZK, (8) mvaviY fMœvsk (8K), (9) `kwgK fMœvsk ((K), (13) R¨vwgwZ|

Aa©-evwl©K cixÿv (7) MvwYwZK cÖZxK cÖZxK, (10) cwigvc (10K)

evwl©K cixÿv

(2) †hvM I we‡qvM(2M), (5) mnR mgm¨v, (6) ¸bbxqK I ¸wYZK, (8) mvaviY fMœvsk (8L), (9) `kwgK fMœvsk (9L), (10) cwigvc(10L), (11) mgq, (12) DcvË msMÖn I web¨¯ÍKiY, (13) R¨vwgwZ|

English cÖ‡kœi aviv I gvbe›Ub t

Read the given text carefully and answer the questions 1, 2, 3 and 4 :

1. Multiple Choice Question: 1×1=10

2. Matching 1×5=05

3. Answer the following questions. 2×5=10 4. Short composition (Competency Based) 10 Read the text and answer the questions 4, 5, 6, 7, 8 & 9:

5. Write only the answer on the answer paper: 1×10=10 6. Fill in the blanks with given words. 1×5=05 7. Answer the following questions: 2×5=10 8. Read the text and write a short composition (Competency

Based) 10

9. Letter (competency Based) 10

10.Situation based “Short Question” with clues. (Competency Based) 05

11.“Short Question” with clues. (Competency Based) 05 12.Re-arrange the following Sentences that make Sense.

1×5=05 13.Fill out form given below: 05

Total = 100 Model Test

Text Book : (Seen 1, 2, 3 and 4) Sl : 1 – 6

Unseen -5, 6, 7, 8 and 9 (Suggested by Class Teacher) Grammar

Sentence, Subject and Predicate, Number, Parts of Speech.

Question no 10, 11, 12 and 13 – Suggested by Class Teacher.

Half Yearly Exam Text Book : (Seen 1, 2, 3 and 4)

(4)

Sl : 7 – 16

Unseen –(5, 6, 7, 8 and 9 -Suggested by Class Teacher) Grammar

Noun, Pronoun, Adjective, Gender, Simple Tense.

Question no 10, 11, 12 and 13 – Suggested by Class Teacher.

Final Exam Text Book : (Seen 1, 2, 3 and 4)

Sl : 17 – 26

Unseen –(5, 6, 7, 8 and 9 -Suggested by Class Teacher) Grammar

Conjugation Of Verbs, Opposite Words, Verb, Adverb.

Question no 10, 11, 12 and 13 – Suggested by Class Teacher.

cÖv_wgK weÁvb cÖ‡kœi aviv I gvbe›Ub t

1. mwVK DËiwU DËic‡Î wjL t (50wU ) 1X50 =50 2. GKK_vq DËi wjL (mswÿß cÖkœ) t 1X15 =15 3. iPbvg~jK cÖkœ (†hvM¨ZvwfwËK mn †gvU mvZwU cÖ‡kœi DËi w`‡Z n‡e )t

5X7 =15

‡gvU = g‡Wj †U÷ cixÿv ( Aa©-evwl©K c‡e©i) 100

(1) Rxe I cwi‡ek, (2) Dw™¢` I cÖvYx, (3) gvwU, (4) Lv`¨, (5) ¯^v¯’¨ewa, (6) c`v_©|

Aa©-evwl©K cixÿv (7) cÖvK…wZK m¤ú`|

evwl©K cixÿv

(8) gnvwek¦, (9) Avgv‡`i Rxe‡b cÖhyw³, (10) AvenvIqv I Rjevqy, (11) Rxe‡bi wbivcËv I cÖv_wgK wPwKrmv, (12) Avgv‡`i Rxe‡b Z_¨, (13) RbmsL¨v I

cÖvK…wZK cwi‡ek|

evsjv‡`k I wek¦ cwiPq cÖ‡kœi aviv I gvbe›Ub t

1. mwVK DËiwU DËic‡Î wjL t (50wU ) 1X50 =50 2. GKK_vq DËi wjL (mswÿß cÖkœ) t 1X15 =15 3. iPbvg~jK cÖkœ (†hvM¨ZvwfwËK mn †gvU mvZwU cÖ‡kœi DËi w`‡Z n‡e )t

5X7 =15

‡gvU = g‡Wj †U÷ cixÿv ( Aa©-evwl©K c‡e©i) 100

(1) Avgv‡`i cwi‡ek I mgvR, (2) mgv‡R mnve¯’vb I mn‡hvwMZv, (3) evsjv‡`‡ki ÿz`ª RvwZmËv, (4) bvMwi‡Ki AwaKvi, (7) cigZmwnòyZv, (8) ˆbwZK I mvgvwRK ¸bvewj, (9) GjvKvi Dbœqb Kg©KvÛ, (10) `y‡h©vM I `y‡h©vM

†gvKv‡ejv|

Aa©-evwl©K cixÿv

(1) Avgv‡`i cwi‡ek I mgvR, (2) mgv‡R mnve¯’vb I mn‡hvwMZv, (3) evsjv‡`‡ki ÿz`ª RvwZmËv, (4) bvMwi‡Ki AwaKvi, (7) cigZmwnòyZv, (8) ˆbwZK I mvgvwRK ¸bvewj, (9) GjvKvi Dbœqb Kg©KvÛ, (10) `y‡h©vM I `y‡h©vM

†gvKv‡ejv|

P‚ovšÍ g‡Wj †U÷

(5) mvgvwRK I ivóªxq m¤ú`, (6) wewfbœ †ckvi gh©v`v, (11) evsjv‡`‡ki RbmsL¨v, (12) Gwkqv gnv‡`k, (13) Avgv‡`i gyw³hy×, (14) Avgv‡`i BwZnvm, (15) Avgv‡`i ms¯‹…wZ, (16) Avgv‡`i evsjv‡`k|

(5)

Bmjvg I ˆbwZK wkÿv cÖ‡kœi aviv I gvbe›Ub t

1. mwVK DËiwU DËic‡Î wjL t (50wU ) 1X50 =50 2. GKK_vq DËi wjL (mswÿß cÖkœ) t 1X15 =15 3. iPbvg~jK cÖkœ (†hvM¨ZvwfwËK mn †gvU mvZwU cÖ‡kœi DËi w`‡Z n‡e )t

5X7 =15

‡gvU = 100

g‡Wj †U÷ ( Aa©-evwl©K c‡e©i ) cvV¨cy¯ÍK t

cÖ_g Aa¨vq - ( m¤ú~Y© )

wØZxq Aa¨vq- (ZvnvivZ †_‡K BKvgZ ch©šÍ )

Z…Zxq Aa¨vq - ( AveŸv Av¤§v‡K m¤§vb Kiv †_‡K †ivMxi †mev Kiv ch©šÍ ) Aa©-evwl©K cixÿv

cvV¨cy¯ÍK t

PZz_© Aa¨vq - (Aviex eY©gvjv †_‡K Zvk`x` ch©šÍ ) evwl©K cixÿv cvV¨cy¯ÍK t

wØZxq Aa¨vq - ( mvjvZ †_‡K C‡`i mvjvZ ch©šÍ )

Z…Zxq Aa¨vq - ( mZ¨ K_v ejv †_‡K ciwb›`v bv Kiv ch©šÍ ) PZz_© Aa¨vq - ( gvÏ †_‡K m~iv BLjvm ch©šÍ )

cÂg Aa¨vq - ( m¤ú~Y© )

wn›`y ag© I ˆbwZK wkÿv cÖ‡kœi aviv I gvbe›Ub t

1. mwVK DËiwU DËic‡Î wjL t (50wU ) 1X50 =50 2. GKK_vq DËi wjL (mswÿß cÖkœ) t 1X15 =15 3. iPbvg~jK cÖkœ (†hvM¨ZvwfwËK mn †gvU mvZwU cÖ‡kœi DËi w`‡Z n‡e )t

5X7 =15

‡gvU = 100 g‡Wj †U÷ ( Aa©-evwl©K c‡e©i )

cvV¨cy¯ÍK t

cÖ_g Aa¨vq - ( Ck¦i me©kw³gvb ) Z…Zxq Aa¨vq - ( gywb-Fwl I ag©MÖš’ ) mßg Aa¨vq - ( ¯^v¯’¨iÿv I Avmb )

Aa©-evwl©K cixÿv cvV¨cy¯ÍK t

wØZxq Aa¨vq - ( †`e-‡`ex I c~Rv )

lô Aa¨vq - ( cÖwZÁv iÿv I ¸iæRb fw³ ) Aóg Aa¨vq - ( †`k †cÖg )

evwl©K cixÿv cvV¨cy¯ÍK t

PZz_© Aa¨vq - ( kÖ×v I mnbkxjZv ) cÂg Aa¨vq Ñ ( Z¨vM I D`viZv ) beg Aa¨vq Ñ (gw›`i I Zx_©‡ÿ ) c~e© cvV c~Y© Av‡jvPbv

Kw¤úDUvi wkÿv cÖ‡kœi aviv I gvbe›Ub t

1. mwVK DËiwU DËic‡Î wjL t (10wU ) 1X20 =20 2. GKK_vq DËi wjL (mswÿß cÖkœ) t 1X10 =10 3. iPbvg~jK cÖkœ ( †h‡Kvb cvuPwU cÖ‡kœi DËi w`‡Z n‡e )t 5X4 =20

‡gvU = 50 g‡Wj †U÷ ( Aa©-evwl©K c‡e©i )

cvV¨cy¯ÍK t

(1) Kw¤úDUvi wK I ‡kÖwYwefvM, (2) Kw¤úDUv‡i nvW©Iq¨vi, (3) †ggix wWfvBm, (4) wmwcBD evm I †iwR÷vi|

Aa©-evwl©K cixÿv cvV¨cy¯ÍK t

(5) mdUIq¨vi, (6) Kw¤úDUvi †bUIqvK© I B›Uvi‡bU, (7) Kw¤úDUv‡ii cÖ‡qvM I gvwëwgwWqv|

(6)

evwl©K cixÿv cvV¨cy¯ÍK t

(8) IqvW© cÖ‡mwms I gvB‡µvmd&U IqvW©, (9) cv‡m©vbvj Kw¤úDUvi I gvDm, (10) Acv‡iwUs wm‡÷g, (11) Kw¤úDUv‡ii e¨envi, (12) cvIqvi c‡q›U I B-‡gBj|

mvaviY Ávb cÖ‡kœi aviv I gvbe›Ub t

1. mwVK DËiwU DËic‡Î wjL t (10wU ) 1X20 =20 2. GKK_vq DËi wjL (mswÿß cÖkœ) t 1X10 =10 3. iPbvg~jK cÖkœ ( †h‡Kvb cvuPwU cÖ‡kœi DËi w`‡Z n‡e )t 5X4 =20

‡gvU = 50 g‡Wj †U÷ ( Aa©-evwl©K c‡e©i )

cvV¨cy¯ÍK t

cÖ_g Aa¨vq Ñ evsjv‡`k cÖm½u ( fvlv Av‡›`vjb, ¯^vaxbZv cÖm½, gyw³hy‡×i 11wU

†m±i, †m±i I †m±i KgvÛviMY, evsjv‡`‡ki exi‡kÖô, Avgv‡`i ‡`‡ki mvZRb exi‡kÖ‡ôi RxebK_v, evsjv‡`‡ki K_v, evsjv‡`‡ki cÖavbgš¿x‡`i bvg I Zv‡`i

†gqv`Kvj, evsjv‡`‡ki ¸iæZ¡c~Y© I `k©bxq ¯’vbmg~n |)

wØZxq Aa¨vq Ñ c„w_ex I †mŠiRMr ( gnv‡`k I gnvmvMi, we‡k¦i e„nËg, D”PZg,

`xN©Zg , MfxiZg I ÿz`ªZg, c„w_exi cÖavb cÖavb n«`, c„w_exi cÖavb cÖavb ce©Zk„½| )

Z…Zxq Aa¨vq Ñ †Ljva~jv ( wewfbœ †Ljvi Rb¥¯’vb, evsjv‡`‡ki †Ljva~jv, dzUej| ) Aa©-evwl©K cixÿv

cvV¨cy¯ÍK t

cÖ_g Aa¨vq Ñ evsjv‡`k cÖm½ ( evsjv‡`‡ki ¯§ibxq eibxq e¨w³Z¡, evsjv‡`‡ki D`hvwcZ we‡kl w`b¸wj, evsjv‡`‡ki cÖvK…wZK LwbR m¤ú`, evsjv‡`‡ki K…wl, evsjv‡`‡ki wkí, evsjv‡`‡ki Z_¨ I †hvMv‡hvM, evsjv‡`‡ki wefvM I

†Rjvmg~n|)

wØZxq Aa¨vq Ñ c„w_ex I †mŠiRMr ( c„w_exi KwZcq Av‡MœqwMwi, c„w_exi weL¨vZ RjcÖcvZmg~n, c„w_exj weL¨vZ Rv`yNi mg~n | )

Z…Zxq Aa¨vq Ñ †Ljva~jv ( wµ‡KU, mvd †Mgm, Gwkqvb †Mgm | ) evwl©K cixÿv

cvV¨cy¯ÍK t

cÖ_g Aa¨vq Ñ evsjv‡`k cÖm½ ( gvbe‡`n, cÖvwYRMr, Dw™¢`RMr, Lv`¨ I cywó, wewfbœ a‡g©i K_v, c„w_exi wewfbœ †`k, ivRavbx, †jvKmsL¨v I gy`ªvi bvg, Gwkqv gnv‡`k |)

wØZxq Aa¨vq Ñ c„w_ex I †mŠiRMr ( Avwe®‹vi I Avwe®‹viK, we‡k¦i weL¨vZ e¨w³eM©, we‡k¦i L¨vZbvgv e¨w³‡`i Dcvwa| )

Z…Zxq Aa¨vq Ñ †Ljva~jv ( Awjw¤úK †Mgm, wek¦ Awjw¤úK Abyôvb| ) Qwe AvuKv ( AsKb )

cÖ‡kœi aviv I gvbe›Ub t

1. `ywU WªBs is Qvov t 2X5 =10

2. `ywU WªBs Ki‡Z n‡e is mn t 2X10=20

3. GKwU MÖvg evsjvi `„k¨ AvuK‡Z n‡e t 10

‡gvU = g‡Wj †U÷ ( Aa©-evwl©K c‡e©i ) 50

1| †cwÝj WªBs t knx` wgbvi, kvcjv, †Pqvi, bvkcvwZ|

2| WªBs K‡i is t Kjv, †jey, kvcjv, m~h©g~Lx, cÖRvcwZ|

3| MÖvg evsjvi `„k¨|

Aa©-evwl©K cixÿv 1| ‡cwÝj WªBs t cvwbi U¨ve, iƒcPv`v gvQ, eK, †Nvov|

2| WªBs K‡i is t cvj †Zvjv †bŠKv, Kjg, ‡Xvj, wUqvcvwL|

3| MÖvg evsjvi `„k¨|

evwl©K cixÿv 1| †cwÝj WªBs t gB, wUqvcvwL, m~h©g~Lx dzj, Kjv|

2| WªBs K‡i is t Kuy‡o Ni, Uzwc, Li‡Mvk, cÖRvcwZ|

3| MÖvg evsjvi `„k¨|

Referensi

Dokumen terkait

In your answer you will be assessed on how well you: ■ demonstrate an understanding of the prescribed text ■ write in Greek for a specific context Question 2 10 marks Read the

Applied Probability and Stochastic Processes, 2 edition, CRC Press, New York Deskripsi Singkat MK Definisi Proses stokastik, rantai markov time diskrit, Perilaku jangka panjang,