Vol. 32, 2015, pp. 13-20
A Comparative Study on Two Risks for the Shape Parameter of Generalized-Exponential Distribution
Chandan Kumer Podder
Department of Statistics, University of Chittagong, Chittagong
Abstract
In this paper, a comparative study on two risk functions for Modified Linear Exponential (MLINEX) and Squared Error (SE) loss functions using the shape parameter of Generalized- Exponential (GE) distribution have been presented.
1. Introduction
The Generalized-Exponential (GE) distribution introduced by Gupta and Kundu (1999) is an important lifetime distribution in survival analysis. This distribution can be used quite effectively in situations where a skewed distribution is needed.
Without any loss of generality, the probability density function of Generalized-Exponential (GE) distribution with shape parameter
and scale parameter  1
(say), is given as x ;     e
 1  e
1; x  0 ,   0
f
x x . (1.1)It can be seen that at
  1
, the model (1.1) reduces to standard exponential distribution. The various properties and estimation of Generalized-Exponential (GE) distribution model have been studied by (Gupta and Kundu (2001a), Raqab and Ahsanullah (2001) and Raqab (2002)). However, Madi and Raqab (2007), Singh et. al. (2008) discussed the estimation and prediction in Bayesian approach of this distribution model.The purpose of this paper is to study and compare the risk functions for the shape parameter of Generalized-Exponential (GE) distribution using MLINEX and SE loss functions.
2. Preliminary Theory
Let
X
be a random variable whose distribution depends on parameter
and let
denotes the parameter space of possible values of
. Now consider the general problem of estimating the unknown parameter
, from the results of a random sample ofn
observations. Denoting the sample observationsx
nx
x
1,
2,  ,
byx
, let ˆ
be an estimate of
and also letL    ˆ , 
be the loss incurred by taking the value of the parameter
to be ˆ
.If
   
be the prior density of
, then according to Bayes’ theorem the posterior density of
will be x      p x
l  |  
, wherel   | x 
is the likelihood function of
given the samplex
, and      
 l  x   d  x
p |
.It follows that, for a given
x
, the expected loss i. e., risk of the estimator ˆ   x
is  ˆ   x ,   E
 L   ˆ   x ,   
R 
       
  
    
 d
x p
x x l
L |
ˆ ,
. (2.1)Assume the existence of (2.1) and that sufficient regularities conditions prevail to permit differentiation under the integral sign, the optimum estimator
 ˆ   x
of
will be a solution of the equation   
 0 ˆ  |   
 L l x d
. (2.2)
The validity of (2.2) and the desirability that should lead to a unique solution necessarily impose restrictions of one’s choice of loss function and prior density of
.Here, the following loss functions are considered.
i) 1
  ˆ , ˆ ln ˆ 1 ;  0 ,  0
 
 
 
 
 
   
 
 
L
. (2.3)ii)
L
2    ˆ ,   c  ˆ   
2; c  0
. (2.4)The loss functions
L
1 is a modified linear-exponential (MLINEX) which an asymmetric andL
2 is a squared error and symmetric.3. Main Results
Let us consider the case of estimating the single parameter
of the Generalized-Exponential (GE) distribution in the model (1.1). The likelihood function of (1.1) is given by        
 
 
n
i
e x n
x
n
i
xi i
i
e e
e x
l
1
1 1 log
1
1
1
|
=
 
ne
T, (3.1)15
where
    
 
n
i
x
xi i
e e
1
1
1
and  
 
n
i
xi
e T
1
1
1log
.The maximum likelihood estimator of
isT
n
, whereT
is defined above. It is noted that the part of thelikelihood function which is relevant to Bayesian inference on the unknown parameter
is
ne
T.A mathematically convenient prior density for the problem under consideration is conjugate prior for the shape parameter
given by   
1;   0 ,   0 ,   0
 e
  , (3.2)is simply a member of the gamma family of distributions.
By combining equations (3.1) and (3.2), we obtain the posterior distribution of
   
 
 
0 , 0 ,
0
;
|
1  
 
   
 
 
 
n T n
n e
x T
, (3.3)which is distributed as gamma distribution with parameters
 n   
and T   
.The advantage of taking the prior distribution to be conjugate lies in the fact that the likelihood function
 x 
l  |
, the prior density   
and the posterior density   | x 
are all of the same functional form, thus ensuring mathematical tractability.For the limiting case, when
    0
in (3.2), the subclass of prior density is given by  1 ; 0
 
 
, (3.4)which is a uniform density function. The particular form of (3.4) is precisely the prior density advocated by Jeffrey’s [3] when one is completely ignorant of the values of
, of course, from their admissible ranges.Substitution from (3.4) and (3.1) in (2.2), the optimum estimator
 ˆ
of
is a solution of 
0
1
0
ˆ exp   
 L T
nd
, (3.5)
which follows that
 n  T
n 1
ˆ
1
  
 
 
.Hence the optimum estimator
 ˆ
for the loss function (2.3) is given byT K
B
 ˆ
, (3.6)where
 
1
 
 
  n
K n
and  
 
n
i
xi
e T
1
1
1log
.Again, for the loss function given by (2.4), it follows from (3.5) that the optimum estimator
 ˆ
is given by 
  
0
1 0
1 1
exp exp ˆ
d T
d T
n n
S ,
also follows that
T n
S
 ˆ
, (3.7)which is same as the mean of the posterior distribution (3.3) when
    0
.Since
x
is a Generalized-Exponential (GE) variate with parameter
andn
, then 
 
n
i
xi
e T
1
1 1
log is distributed as gamma distribution with parameters
n
and
, i. e., ,  
~ G n
T
.The probability density function of
T
is ;  exp   
1;  0 ,  0
   
 T T T
T n
p
nn
. (3.8)
Now we are interested in finding the risk functions for the estimators
 ˆ
B and ˆ
S with respect to MLINEX and SE loss functions considered in (2.3) and (2.4).17
  ˆ ,  
   ˆ ,   
B B
ML
E L
R 
    
 
   
 1 ˆ ln ˆ ln 1
 
E
BE
B , (3.9)which gives
    
 
 
 
n n n
R
ML Bn  
 ˆ , ln
. (3.10)Similarly, the risk function of the estimator
 ˆ
S with respect to MLINEX loss function is    
 
 
 
 
  ln 1
ˆ ,
n n n n
n n
R
ML S  
 , (3.11)where
  
0
exp
1ln y y y dy
n
n is the first differentiation of n
with respect ton
.The risk functions
R
ML  ˆ
B,  
andR
ML  ˆ
S,  
in (3.10) and (3.11) involving the expression of gamma and di-gamma  
functions are complicated.The risk functions of the estimators
 ˆ
B and ˆ
S with respect to SE loss function are as follow; ˆ ,  
2
 
 
 
 T
E K
R
S B=
     
2 2
2
2
1
1 1 2
1
1 
 
 
 
 
 n n K
K n
. (3.12)  ˆ
S,      ˆ
S  
2S
E
R
=
 
  
2
2 1
2 
 n n
n
. (3.13)The both risk functions (3.12) and (3.13) under squared error loss function are quadratic in
and it is concluded that when   1
, the two estimators and hence their risks coincide.MLINEX and SE risk functions have been calculated for different values of parameter corresponding to sample sizes and their results are presented in the following tables.
Table 1 : MLINEX and SE risk functions for
  1
,   3
andn  10
. R
ML  ˆ
B,   R
ML  ˆ
S,   R
S  ˆ
B,   R
S  ˆ
S,  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.4270 0.4270 0.4270 0.4270 0.4270 0.4270 0.4270 0.4270 0.4270 0.4270 0.4270 0.4270
0.4694 0.4694 0.4694 0.4694 0.4694 0.4694 0.4694 0.4694 0.4694 0.4694 0.4694 0.4694
0.0584 0.2336 0.5256 0.9344 1.4599 2.1023 2.8615 3.7375 4.7302 5.8398 7.0661 8.4093
0.0417 0.1667 0.3750 0.6667 1.0417 1.5000 2.0417 2.6667 3.3750 4.1667 5.0417 6.0000 Table 2 : MLINEX and SE risk functions for
  2
,   2
andn  20
. R
ML  ˆ
B,   R
ML  ˆ
S,   R
S  ˆ
B,   R
S  ˆ
S,  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.1975 0.1975 0.1975 0.1975 0.1975 0.1975 0.1975 0.1975 0.1975 0.1975 0.1975 0.1975
0.1999 0.1999 0.1999 0.1999 0.1999 0.1999 0.1999 0.1999 0.1999 0.1999 0.1999 0.1999
0.0177 0.0708 0.1593 0.2833 0.4426 0.6374 0.8675 1.1331 1.4341 1.7704 2.1422 2.5494
0.0161 0.0643 0.1447 0.2573 0.4020 0.5789 0.7880 1.0292 1.3026 1.6082 1.9459 2.3158 Table 3 : MLINEX and SE risk functions for
  3
,   1
andn  30
. R
ML  ˆ
B,   R
ML  ˆ
S,   R
S  ˆ
B,   R
S  ˆ
S,  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.0099 0.0394 0.0887 0.1576 0.2463 0.3547 0.4828 0.6305 0.7980 0.9852 1.1921 1.4187
0.0099 0.0394 0.0887 0.1576 0.2463 0.3547 0.4828 0.6305 0.7980 0.9852 1.1921 1.4187
19
Table 4 : MLINEX and SE risk functions for
  1
,  1
andn  10
. R
ML  ˆ
B,   R
ML  ˆ
S,   R
S  ˆ
B,   R
S  ˆ
S,  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0556 0.0556 0.0556 0.0556 0.0556 0.0556 0.0556 0.0556 0.0556 0.0556 0.0556 0.0556
0.0613 0.0613 0.0613 0.0613 0.0613 0.0613 0.0613 0.0613 0.0613 0.0613 0.0613 0.0613
0.0313 0.1250 0.2813 0.5000 0.7813 1.1250 1.5313 2.0000 2.5313 3.1250 3.7813 4.5000
0.0417 0.1667 0.3750 0.6667 1.0417 1.5000 2.0417 2.6667 3.3750 4.1667 5.0417 6.0000 Table 5 : MLINEX and SE risk functions for
  2
,  2
andn  20
. R
ML  ˆ
B,   R
ML  ˆ
S,   R
S  ˆ
B,   R
S  ˆ
S,  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.2134 0.2134 0.2134 0.2134 0.2134 0.2134 0.2134 0.2134 0.2134 0.2134 0.2134 0.2134
0.2393 0.2393 0.2393 0.2393 0.2393 0.2393 0.2393 0.2393 0.2393 0.2393 0.2393 0.2393
0.0133 0.0533 0.1200 0.2134 0.3334 0.4801 0.6535 0.8535 1.0802 1.3336 1.6136 1.9203
0.0161 0.0643 0.1447 0.2573 0.4020 0.5789 0.7880 1.0292 1.3026 1.6082 1.9459 2.3158 Table 6: MLINEX and SE risk functions for
  3
,  3
andn  30
. R
ML  ˆ
B,   R
ML  ˆ
S,   R
S  ˆ
B,   R
S  ˆ
S,  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.4748 0.4748 0.4748 0.4748 0.4748 0.4748 0.4748 0.4748 0.4748 0.4748 0.4748 0.4748
0.5446 0.5446 0.5446 0.5446 0.5446 0.5446 0.5446 0.5446 0.5446 0.5446 0.5446 0.5446
0.0086 0.0345 0.0776 0.1379 0.2155 0.3103 0.4224 0.5517 0.6983 0.8621 1.0431 1.2414
0.0099 0.0394 0.0887 0.1576 0.2463 0.3547 0.4828 0.6305 0.7980 0.9852 1.1921 1.4187
4. Discussion
For any sample size
n
it is evident from the tables that in every case considered except for   1
, the MLINEX risk functionR
ML  ˆ
B,  
is uniformly smaller thanR
ML  ˆ
S,  
. This implies that in case of the MLINEX loss function, the MLINEX estimator ˆ
B is better compared to the SE estimator ˆ
S.It has been seen that when
   1
, the risk of ˆ
B with respect to SE loss function is always greater than that of risk of the estimator ˆ
S. Therefore in this case, ˆ
S is better compared to the estimator ˆ
B for anysample size
n
when SE loss function is considered. But if   1
, it also followsR
S  ˆ
B,    R
S  ˆ
S,  
, implies that ˆ
B is an admissible with respect to SE loss function.It has been further found that when
   1
, the two estimators and hence their risk functions are identical under both quadratic and modified-linear-exponential (MLINEX) loss functions and either estimator ˆ
B or ˆ
S is an admissible.References
Gupta, R. D. and Kundu, D. (1999): Generalized-Exponential Distribution, Australia and New Zealand Journal of Statistics, 41, 173-188.
Gupta, R. D. and Kundu, D. (2001a): Generalized-Exponential Distribution, Different method of estimations, Journal of statistical computation and simulation, 69, 315-338.
Jeffreys, H. (1961): Theory of Probability, 3rd ed. Oxford; Clarendon Press.
Madi, M. T. and Raqab, M. Z. (2007): Bayesian prediction of rainfall records using the generalized exponential distribution. Environmetrics, 18, 541-549.
Podder, C. K. and Roy, M. K. (2003): Bayesian estimation of the parameter of Maxwell distribution under MLINEX loss function, Journal of Statistical Studies, Vol.23, 11-16.
Raqab, M. Z. and Ahsanullah, M. (2001): Estimation of the location and scale parameter of the generalized exponential distributions based on order statistics, Journal of statistical computation and simulation, 69, 109-124.
Raqab, M. Z. (2002): Inference for generalized exponential distribution based on record statistics, Journal of statistical planning and inference, 104, 339-350.
Singh, R., Singh, S. K., Singh, U., and Singh, G. P., (2008): Bayes Estimator of the Generalized- Exponential Parameters under LINEX loss function using Lindley’s Approximation, Data Science Journal, 7, 95-107.
Zellner, A. (1986): Bayesian estimation and Prediction using asymmetric loss function, Journal of American Statistical Association, 81, 446-451.