• Tidak ada hasil yang ditemukan

Pascal's Triangle & Binomial Theorem

N/A
N/A
Protected

Academic year: 2024

Membagikan "Pascal's Triangle & Binomial Theorem"

Copied!
11
0
0

Teks penuh

(1)

Senior Lecturer Department of GED

Daffodil International University

Differentiation (Part – 3)

(Technique of Differentiation)

(2)

Example:

2

�� ( 1 ) = 0 ;

 

Constant Rule:

If is a constant, then

 

�� ( � ) = 0 ;

 

�� ( 1000 ) =0 ;

 

�� ( � ) =0.

 

(3)

Example: Find for the function

 

3

Given that,

 

��

�� = �

�� ( √ � )

 

Taking derivative with respect to on both sides,

 

¿

��

(

1 2

)

 

¿ 1 2

1 2 1

 

��

�� = 1 2

1

  2

∴ ��

�� = �

� √ �

 

¿ 1 2

1

1 2

 

Power Rule:

 

(4)

Sum or Difference Rule:

If and are functions of x, ( and ), then

 

4

Given that,

 

�� ( �

) = � �

1

 

��

�� =

��

( √3 � − √1� )

 

Taking derivative with respect to on both sides,

 

¿

��

(

1

3

)

��

(

1 2

)

 

¿ 1 3

1 31

(

12

1 21

 

)

��

�� =1

3

2

3+ 1

2

3

  2

∴ ��

�� = 1 3

1

3

2

+

1 2

1

√ �

3

 

¿ 1 3

1

2 3

+ 1 2

1

3 2

 

Example 1: Find for the function

 

(5)

Example 2: Find for the function  

5

Given that,

 

�� ( ��� � ) = 1

 

��

�� =

��

(

+2��� � 12 ��� �

)

 

Taking derivative with respect to on both sides,

 

¿

��

(

)

+

�� (2 ��� �)

��

(

12 ��� �

)

 

¿ �

+ 2 �

�� ( ��� � ) − 1 2

�� ( ��� � )

 

∴ ��

�� = �

+ 2 cos � − 1 2 �

 

¿ �

+ 2 cos � − 1 2

1

 

�� ( �

) = �

 

�� ( sin � ) = cos �

 

�� ( � ± � ) = �

�� ( � ) ± �

�� ( � )

 

Sum or Difference Rule: (Cont...)

�� ( �� ) = � �

�� ( � )

 

(6)

Example: Find for the function

 

6

Given that,

 

��

�� = �

�� ( �

2

���

1

� )

 

Taking derivative with respect to on both sides,

 

¿ �

2

�� ( ���

1

� ) + ���

1

� �

�� ( �

2

)

 

¿ 2 1

1+2 +���1 . (2 )

 

��

�� =

+ + tan

 

��

(

���1

)

= 1

1+ 2

 

 

Product Rule:

If and are functions of x, ( and ), then

 

(7)

Example: Find for the function

 

7

Quotient Rule:

If and are functions of x, ( and ), then

 

Given that,

 

��

�� =

��

(

53��� �

)

 

Taking derivative with respect to on both sides,

 

¿

(5��� �)

�� (3 )3 � �

�� (5��� �) (5��� �)2

 

¿

(5��� �)3

�� ( )3 � �

�� (5��� �) (5��� �)2

 

��

�� = ����� �+ � ���

(

��� �

)

 

�� ( � )=1

 

�� ( ��� � ) = ���

2

 

��

�� = (5��� �)3(1) 3

(

0 ���2

)

(5��� �)2

 

�� ( � ) =0

 

(8)

8

Chain Rule:

If is a function of , () and is a function of x, (), then

 

Example: Find for the function

 

Given that,  

��

�� =

�� ()

��

(

2���1

)

 

By Chain Rule,

¿2

��

(

���1

)

 

��

�� =���

 

�� ( �

) = �

 

�� ( cos

1

� ) = − 1

√ 1 − �

2

 

��

�� =

(

2���1

)

2 1

1 2

 

Suppose

 

So

 

��

�� = ��

�� ∙ ��

��

 

(9)

Find for the functions and

 

9

Given parametric equations, and

 

��

� � = �

� � ( � cos � +� sin � )

 

¿ �

� � ( � cos � ) + �

� � ( � sin � )

 

¿ � �

�� ( cos � ) + � �

� � ( sin � )

 

��

�� = ��

� � ∙ � �

�� =� cos � ∙ 1

� cos � − asin �

 

� �

� � = �

� � ( � sin � )

 

¿

 

a (− sin � )+ � cos �

∴ ��

� � = � cos � − asin �

 

Again , � =� sin �

 

¿ � �

� � ( sin � )

 

∴ � �

�� =� cos �

 

∴ ��

�� = � ��� �

���� � − ���� �

 

By Chain Rule,

(10)

Example: Find for the function

 

10

Function as Power of another Function:

If and are functions of x, ( and ), then

 

Given that,

 

��

(

)

+

��

(

)

=

�� (1)

 Taking derivative with respect to on both sides,  

⇒ �

�� ( ln )+

�� ( ln )=0

 

⇒ �

(

1 +ln � ��

��

)

+

(

1

��

�� +ln

)

=0

 

⇒ � � �1+ ln � ��

�� + � �1 ��

�� + ln =0

 

��

��

(

ln + �−1

)

= 1 ln

 

��

�� =

(

1 + �� �

)

�� �+ �−1

 

��

�� =−�1 −� ln

ln + 1

 

⇒ �1 + ln � ��

�� + 1� ��

�� + ln =0

 

�� ( �� ) =� �

�� ( � ) + � �

�� ( � )

 

(11)

Exercise

11

(a) Find the derivative of the following functions :

(b) Find of the parametric equations:

and .

 

Referensi

Dokumen terkait