Differentiation (Part – 1)
Department of GED
Daffodil International University
Function
2
If and are two variables related to one another in such a way that each value of determines exactly one value of , then we say that is a function of and it is simply written as , where is an independent variable and is a dependent variable. The value of or is called functional value.
is a function For
We get,
is not a function
For
We get,
1 1
-1
x y
4 2
-2 9
3 -3 1 1
-1
y x
2 4 -2 3 9 -3
Concept of Derivative
Differentiation Instantaneous rate of change of a function with respect to one of its variables
to find the slope of the tangent line to the function at a point.
����� = �h���� �� ��������
�h���� �� ���� = Δ � Δ �
Δ �
Δ �
�
�
5 20 25
15
0 10
Position
�
�
5 20 25 15
0 10
Position
Geometrical Representation of Derivative
4
�
� + h �
�
( �+h , � (�+h))
( �,� (�))
� (�+h)
� (�)
h
Secant Line
Geometrical Representation of Derivative
�
� + h �
�
( �+h , � (�+h)) ( �,� (�))
� (�+h)
� (�)
h
Secant Line
Geometrical Representation of Derivative
6
�
� + h
�
�
( �+h , � (�+h)) ( �,� (�))
� (�+h)
� (�)
h
Secant Line
Geometrical Representation of Derivative
First Principle: A function is differentiable at a point if exists (is finite).
∴ ��
�� = � ′
(
�)
=lim
h →0
�
(
�+h)
− � (�) h�
�
�
( �,� (�))
� (�)
h → 0
Secant Line
Tangent Line
Example 1: Find the derivative of using first principle
8
Let
¿lim
h →0
� −� h
From First Principle,
¿ lim
h →0
0 h
¿
lim
h →0
0
¿ 0
∴ ��
�� = �
�� ( � ) = �
Example 2: Find the derivative of using first principle
Let
¿ lim
h →0
� + h − � h
From First Principle,
¿ lim
h →0
h h
¿
lim
h →0
1
¿ 1
∴ ��
�� = �
�� ( � ) = �
Example 3: Find the derivative of using first principle
10
Let
¿lim
h →0
(�+h)�−�� h
From First Principle,
¿lim
h →0
{
�(
1+�h) }
�−��h
¿lim
h →0
��
(
1+ h�)
�−��h
∴ ��
�� = �
��
(
��)
=� ��−1
¿��lim
h →0
(
1+ h�)
�−1h
��
��=��lim
h →0
1+�
(
�h)
+�(�2−! 1)(
�h)
2+�(�−13) (! �−2)(
h�)
3+… −1h
¿ �� lim
h →0
�
(
h�)
+�(�2−! 1)(
h�)
2+�(�−13) (�! −2)(
�h)
3+…h
¿ �� lim
h →0
h
{
�(
�1)
+�(�2−! 1)(
�h2)
+�(�−13)!(�−2)(
�h23)
+…}
h
¿ �� lim
h →0
{
�(
1�)
+�(�2−! 1)(
�h2)
+ �(�−13) (�! −2)(
�h23)
+…}
¿ �� �
(
�1)
Example 4: Find the derivative of using first principle
Let
¿ lim
h →0
�
(�+h)− �
�h
From First Principle,
¿ lim
h →0
�
�. �
h− �
�h
¿
lim
h →0
��
(
�h −1 )
h
¿�� lim
h →0
1+h+ h2
2 ! + h3
3 ! + h4
4 ! +… −1 h
��
�� =�� lim
h →0
h+ h2
2! + h3
3! + h4
4! +… h
[
��
2�
3�
4]
∴ ��
= �
( �
�) =�
�
¿�� lim
h →0
h
(
1+ 2h! + h23! + h3
4 ! +…
)
h
¿ �
�lim
h →0
( 1 + 2 h ! + h
23 ! + h
34 ! + … )
¿ �
�.1
Example 5: Find the derivative of using first principle
12
Let
¿lim
h →0
ln
(
�+�h)
h
From First Principle,
¿lim
h →0
ln
(
1+ h�)
h
��
�� =lim
h →0
h
(
�1 − 12 �h2 + 1 3h2
�3 − 1 4
h3
�4 +…
)
h
[
∵ln (1+�)=�− �22+ �33 − �44 +⋯]
∴ ��
�� = �
�� ( ln ( � ) ) = 1
�
¿lim
h →0
(
1� − 12 �h2 + 1 3h2
�3 − 1 4
h3
�4 +…
)
¿ 1
�
¿lim
h →0
h
� − 1 2
h2
�2 + 1 3
h3
�3 − 1 4
h4
�4 +…
h
Example 6: Find the derivative of using first principle
Let
¿
lim
h →0
cos (
�+h)
−cos
� h
From First Principle,
¿lim
h →0
− 2 sin
(
2�2+h)
sin(
h2)
h
¿− lim
h →0
sin
(
2�2+h)
× limh 2 →0sin
(
h2)
h 2
¿ −sin
(
2 �2+0)
×1
�� �
cos �−cos�=−2 sin
(
�+2�)
sin(
�−2 �)
limh →0
sin h
h =lim
h →0
h
sin h =1
????
Example 7: Find the derivative of using first principle
14
Let
¿
lim
h →0
sin (
� �+�h)
−sin
� � h
From First Principle,
¿lim
h →0
2 cos
(
2��2+�h)
sin(
�2h)
h
¿lim
h →0
cos
(
2��2+�h)
×limh →0sin
(
�2h)
h 2
¿cos
(
2��2+�.0)
× limh →0�sin
(
�2h) (
�2h)
��
�� =(cos ��)�lim
�h 2 →0
sin
(
�2h) (
�2h)
sin �−sin�=2���
(
�+2�)
���(
�−2 �)
∴ ��
�� = �
�� ( ��� � � ) = � ��� ��
¿ ( cos �� ) × � ( 1 )
[
∵ h →0⟹ �2h →0]
lim
h →0
sin h
h =lim
h →0
h
sin h =1
Example 8: Find the derivative of using first principle
Let
¿
lim
h →0
tan (
�+h)
−tan
� h
From First Principle,
¿ lim
h →0
sin ( �+h) cos (� +h) −
sin � cos � h
¿lim
h →0
sin ( �+h) cos � − sin �cos( � +h) cos (�+h ) cos �
h
¿ lim
h →0
sin ( � + h ) cos � − cos ( � + h ) sin � h cos ( � + h ) cos �
��
�� = lim
h →0
sin h
h cos ( � +h ) cos �
sin �cos�−cos�sin�=sin (�−�)
∴ ��
�� = �
�� ( ��� � ) =�� �
��
¿ lim
h →0
sin h
h × lim
h →0
1
cos ( � +h ) cos �
¿ 1 × 1
cos ( � + 0 ) cos �
¿ 1
co s2� =se c2 �
sin ( � + h − � )
Example 9: Find the derivative of using first principle
16
Let
��
�� =
lim
h →0
tan
−1(
� +h)
−tan
−1 �h ⋯(�)
From First Principle,
Suppose and
When
Thus,
In concept of Limit
��
�� = lim
h →0
� + � − � h
��
�� = lim
�→0
�
tan ( � + � ) − tan � [ ∵ h → 0 ⟹ � → 0 ? ? ? ]
Example 9: Find the derivative of using first principle (cont.…)
sin �cos�−cos�sin�=sin (�−�)
��
�� = lim
�→0
�
tan ( � + � ) − tan � [ ∵ h → 0 ⟹ � → 0 ]
¿ lim
�→0
� sin ( � +�) cos ( � +�) −
sin � cos �
¿ lim
�→0
�
sin ( �+ �) cos � − sin � cos ( �+�) cos ( �+�) cos �
¿ lim
�→0
� cos ( � + � ) cos �
sin ( � + � ) cos � − cos ( � +� ) sin �
¿ lim
�→0
� cos ( � + � ) cos � sin ( � + � − � )
��
�� = lim
�→0
�
sin � × lim
�→0
cos ( � + � ) cos �
¿ 1 × cos ( � + 0 ) cos �
¿ cos
2�
¿ 1
sec
2�
¿ 1
1+ tan
2� = 1 1 + �
2
�
cos (
� +�) cos
�∴ �� � −�
[
∵
���� � = � ]
lim�→0
sin �
� =lim
�→0
�
sin � =1
Example 10: Find using first principle
18
Let
¿ lim
h →0
( √ � + h − √ � ) ( √ � + h + √ � )
h ( √ � +h + √ � )
From First Principle,
¿ lim
h →0
( √ � + h )
2− ( √ � )
2h ( √ � + h + √ � )
¿ lim
h →0
� + h − � h ( √ � + h + √ � )
¿ 1
√ � +0 + √ �
∴ ��
�� = �
�� ( √ � ) = �
� √ �
¿ lim
h →0
h
h ( √ � + h + √ � )
��
�� = lim
h →0
1
√ � + h + √ �
¿ 1
√ � + √ �
¿ lim
h →0
√ � + h − √ �
h
Exercise
Find the derivative of the following functions using first principle: