• Tidak ada hasil yang ditemukan

Pascal's Triangle & Binomial Theorem

N/A
N/A
Protected

Academic year: 2024

Membagikan "Pascal's Triangle & Binomial Theorem"

Copied!
19
0
0

Teks penuh

(1)

Differentiation (Part – 1)

Department of GED

Daffodil International University

(2)

Function

2

If and are two variables related to one another in such a way that each value of determines exactly one value of , then we say that is a function of and it is simply written as , where is an independent variable and is a dependent variable. The value of or is called functional value.

 

is a function For

We get,

  is not a function

For

We get,

 

1 1

-1

x y

4 2

-2 9

3 -3 1 1

-1

y x

2 4 -2 3 9 -3

(3)

Concept of Derivative

Differentiation Instantaneous rate of change of a function with respect to one of its variables

to find the slope of the tangent line to the function at a point.

 

����� = �h���� �� ��������

�h���� �� ���� = Δ � Δ �

 

Δ 

Δ 

 

5 20 25

15

0 10

Position

 

5 20 25 15

0 10

Position

(4)

Geometrical Representation of Derivative

4

 

   

� + h �

 

 

( +h , (+h))

( , ())

(+h)

 

 ()

 h

Secant Line

(5)

Geometrical Representation of Derivative

   

� + h �

 

 

( +h , (+h)) ( , ())

(+h)

 

 ()

 h

 

Secant Line

(6)

Geometrical Representation of Derivative

6

   

� + h

 

 

( +h , (+h)) ( , ())

(+h)

 

 ()

 h

 

Secant Line

(7)

Geometrical Representation of Derivative

First Principle: A function is differentiable at a point if exists (is finite).

 

��

�� =

(

)

=

lim

h →0

(

+h

)

() h

 

 

 

 

( , ())

 ()

h →  0

  Secant Line

Tangent Line

(8)

Example 1: Find the derivative of using first principle

 

8

Let  

 

¿lim

h →0

−� h

 

From First Principle,

 

¿ lim

h →0

0 h

 

¿

lim

h →0

0

 

¿ 0

 

∴ ��

�� = �

�� ( � ) = �

 

(9)

Example 2: Find the derivative of using first principle

 

Let  

 

¿ lim

h →0

� + h − � h

 

From First Principle,

 

¿ lim

h →0

h h

 

¿

lim

h →0

1

 

¿ 1

 

∴ ��

�� = �

�� ( � ) = �

 

(10)

Example 3: Find the derivative of using first principle

 

10

Let  

 

¿lim

h →0

(+h) h

 

From First Principle, 

¿lim

h →0

{

(

1+h

) }

h  

 

¿lim

h →0

(

1+ h

)

h  

��

�� =

��

(

)

=� �1

 

¿lim

h →0

(

1+ h

)

1

h  

��

��=lim

h →0

1+

(

h

)

+(2! 1)

(

h

)

2+(13) (! �−2)

(

h

)

3+… −1

h  

¿ lim

h →0

(

h

)

+(2! 1)

(

h

)

2+(13) (! 2)

(

h

)

3+

h  

¿ lim

h →0

h

{

(

1

)

+(2! 1)

(

h2

)

+(13)!(2)

(

h23

)

+

}

h

 

¿ lim

h →0

{

(

1

)

+(2! 1)

(

h2

)

+ (13) (! 2)

(

h23

)

+

}

 

¿

(

1

)

 

(11)

Example 4: Find the derivative of using first principle

 

Let  

 

¿ lim

h →0

(+h)

− �

h

 

From First Principle,

 

¿ lim

h →0

. �

h

− �

h

 

¿

lim

h →0

(

h

1 )

h

 

¿ lim

h →0

1+h+ h2

2 ! + h3

3 ! + h4

4 ! +… −1 h

 

��

�� = lim

h →0

h+ h2

2! + h3

3! + h4

4! + h

 

[

2

3

4

]

 

∴ ��

= �

( �

) =�

 

¿   lim

h →0

h

(

1+ 2h! + h2

3! + h3

4 ! +

)

h

 

¿ �

  lim

h →0

( 1 + 2 h ! + h

2

3 ! + h

3

4 ! + … )

 

¿ �

.1

 

(12)

Example 5: Find the derivative of using first principle

 

12

Let  

 

¿lim

h →0

ln

(

+h

)

h

 

From First Principle,

 

¿lim

h →0

ln

(

1+ h

)

h

 

��

�� =lim

h →0

h

(

1 12 h2 + 1 3

h2

3 1 4

h3

4 +

)

h

 

[

ln (1+)= 22+ 33 44 +

]

 

∴ ��

�� = �

�� ( ln ( � ) ) = 1

 

¿lim

h →0

(

1 12 h2 + 1 3

h2

3 1 4

h3

4 +

)

 

¿ 1

 

¿lim

h →0

h

1 2

h2

2 + 1 3

h3

3 1 4

h4

4 +

h

 

(13)

Example 6: Find the derivative of using first principle

 

Let  

 

¿

lim

h →0

cos (

+h

)

cos

h

 

From First Principle,

 

¿lim

h →0

2 sin

(

22+h

)

sin

(

h2

)

h

 

¿ lim

h →0

sin

(

22+h

)

× limh 2 0

sin

(

h2

)

h 2

 

¿ sin

(

2 2+0

)

×1

 

�� �

 

cos  cos=2 sin

(

+2

)

sin

(

2

)

limh →0

sin h

h =lim

h →0

h

sin h =1

 

  ????

 

(14)

Example 7: Find the derivative of using first principle

 

14

Let  

 

¿

lim

h →0

sin (

� �+�h

)

sin

� � h

 

From First Principle,

 

¿lim

h →0

2 cos

(

2��2+h

)

sin

(

2h

)

h

 

¿lim

h →0

cos

(

2��2+h

)

×limh →0

sin

(

2h

)

h 2

 

¿cos

(

2��2+.0

)

× limh →0

sin

(

2h

) (

2h

)

 

��

�� =(cos ��)×lim

h 2 0

sin

(

2h

) (

2h

)

 

sin  sin=2���

(

+2

)

���

(

2

)

∴ ��

�� = �

�� ( ��� � � ) = � ��� ��

 

¿ ( cos �� ) × � ( 1 )

 

[

h →0⟹ �2h 0

]

 

lim

h →0

sin h

h =lim

h →0

h

sin h =1

 

(15)

Example 8: Find the derivative of using first principle

 

Let  

 

¿

lim

h →0

tan (

+h

)

tan

h

 

From First Principle,

 

¿ lim

h →0

sin ( +h) cos ( +h)

sin cos h

 

¿lim

h →0

sin ( +h) cos sin cos( +h) cos (+h ) cos

h

 

¿ lim

h →0

sin ( � + h ) cos � − cos ( � + h ) sin � h cos ( � + h ) cos �

 

��

�� = lim

h →0

sin h

h cos ( � +h ) cos �

 

sin  cos�−cossin=sin (�−�)

∴ ��

�� = �

�� ( ��� � ) =�� �

 

¿ lim

h →0

sin h

h × lim

h →0

1

cos ( � +h ) cos �

 

¿ 1 × 1

cos ( � + 0 ) cos �

 

¿ 1

co s2 =se c2

 

sin ( � + h − � )

 

(16)

Example 9: Find the derivative of using first principle

 

16

Let  

 

��

�� =

lim

h →0

tan

1

(

+h

)

tan

1

h ⋯()

 

From First Principle,

 

Suppose and

 

When

Thus,

In concept of Limit

 

��

�� = lim

h →0

� + � − � h

 

��

�� = lim

�→0

tan ( � + � ) − tan � [ ∵ h → 0 ⟹ � → 0 ? ? ? ]

 

(17)

Example 9: Find the derivative of using first principle (cont.…)

 

sin  cos�−cossin=sin (�−�)

��

�� = lim

�→0

tan ( � + � ) − tan � [ ∵ h → 0 ⟹ � → 0 ]

 

¿ lim

0

sin ( +) cos ( +)

sin cos

 

¿ lim

0

sin ( + ) cos sin cos ( +) cos ( +) cos

 

¿ lim

0

� cos ( � + � ) cos �

sin ( � + � ) cos � − cos ( � +� ) sin �

 

¿ lim

0

� cos ( � + � ) cos � sin ( � + � − � )

 

��

�� = lim

�→0

sin � × lim

�→0

cos ( � + � ) cos �

 

¿ 1 × cos ( � + 0 ) cos �

 

¿ cos

2

 

¿ 1

sec

2

 

¿ 1

1+ tan

2

� = 1 1 + �

2

 

cos (

+

) cos

   ��

[

 

��� � = � ]

lim0

sin

=lim

0

sin =1

 

(18)

Example 10: Find using first principle

 

18

Let  

 

¿ lim

h →0

( √ � + h − √ � ) ( √ � + h + √ � )

h ( √ � +h + √ � )

 

From First Principle,

 

¿ lim

h →0

( √ � + h )

2

− ( √ � )

2

h ( √ � + h + √ � )

 

¿ lim

h →0

� + h − � h ( √ � + h + √ � )

 

¿ 1

√ � +0 + √ �

 

∴ ��

�� = �

�� ( √ � ) = �

� √ �

 

¿ lim

h →0

h

h ( √ � + h + √ � )

 

��

�� = lim

h →0

1

√ � + h + √ �

 

¿ 1

√ � + √ �

 

¿ lim

h →0

√ � + h − √ �

h

 

(19)

Exercise

Find the derivative of the following functions using first principle:

 

Referensi

Dokumen terkait

Based on the convexity and concavity behavior of objective function with respect to the decision variables the Algorithm 4.1 is developed to find the global optimal

derivative  method  which  relies  on  the  sign  and  magnitude  of  the  change 

We consider the factorial index prices obtained by MDF method as a function depending on more variables and we show that this function satisfy the monotonicity with respect to

We generalize the concept of a number derivative to the following algorithm; in order to illustrate each step, we will present the corresponding step from the standard

Third, Javanese reduplication can perform derivative function (to change the category) as well as inflective function (to maintain the category) of the base forms to

Indefinite Integrals 169 Proof The result follows from the Constant Multiple Rule for Differentiation and the Rule for Derivative of the Identity Function: d dxkx = k· d dxx = k

Homogeneous differential equation A first order differential equation is called homogeneous equation, if the right side of ODE is a homogeneous function with respect to the variables

 CO 2 :use the limit concept to determine where a function is continuous  CO 3: find n-th derivative of the product of two functions by using Leibnitz theorem  CO 4 : apply