Integration (Part – 1)
Shirin Sultana Lecturer
Department of GED
Daffodil International University
2
Concept of Integration
Any operation in mathematics has an inverse operation such as Addition Subtraction
Multiplication Division (function) (inverse function)
(matrix) (inverse matrix)
The reverse process of differentiation is defined as anti-differentiation or simply integration
Integral
�
2
2 �
Derivative
Concept of Integration (cont.…)
∫ � ( � ) ��
Integrand
(function we want to integrate)
Integral Symbol Integral with respect to
∫ � ( � ) �� = � ( � ) + �
Why “+ C” ???
Constant of integration
Integral
2 �
�
2
∫ 2 ��� = � 2 + �
sometimes abosorbed into integrand can be written as
can be written as
4
Integration Formulas
Source: Calculus, 10th Edition. Author: Howard Anton, Irl C. Bivens, Stephen Davis, page. 324.
Rule 1:
∫ 4 ��� � �� = 4 ∫ ��� ���
∫
������ =sin �
¿ 4 sin � + �
Example: E
∫ ( � + � 2 ) �� = ∫ ��� + ∫ � 2 ��
∫ �
��� = �
�+1
�+ 1 , � ≠ − 1
¿ �
1+11+ 1 + �
2+12 + 1 + �
Example: E
Rule 2:
�
2�
3
Rule 3:
6
∫ � ( � 2 + � − 1 ) �� = ∫ ( � 3 + � 2 − � ) ��
∫ �
��� = �
�+1
� + 1 , � ≠ − 1
¿ ∫ � 3 �� + ∫ � 2 �� − ∫ ���
Example 1: E
¿ �
44 + �
33 − �
22 + �
Example 2: E
∫ ( � � − 5 � � + 2 ) �� = ∫ � � �� − ∫ 5 � � �� + ∫ 2 ��
∫ �� = �
¿ � � − 5 ∫ � � �� + 2 ∫ ��
¿ �� −5 ��
ln � +2 �+�
∫ �
��� = �
�
ln �
∫ � � �� = � �
Example 3: E
∫ � + 2 √ � + 7
√ � �� = ∫ ( √ � � + 2 √ �
√ � +
7
√ � ) �� = ∫ ( �
12+ 2 + 7 �
−12) ��
¿ ∫ �
1
2
�� + ∫ 2 �� + ∫ 7 �
−1
2
��
¿ �
1 2+1
1
2 +1
+2 � +7 �−
1 2+1
− 1
2 + 1
+�
¿ �
3 2
3 +2 � +7 �
1 2
1 + �
¿ 2
3 ( √ � )
3+ 2 � + 14 √ � + �
∫ �
��� = �
�+1
� + 1
Prove that
8
¿ ln | � | + �
∫
1 � �� = ln | � |
Proof
Suppose
� ( � ) = �
�
�� [ � ( � ) ] = �� � ( � )
�
′( � ) = � �
��
∴ �
′( � ) �� = ��
∫ �
′
( � )
� ( � ) �� = ∫ 1 � � �
So,
¿ ln | � ( � ) | + �
∴ ∫ �
′
( � )
� ( � ) �� =�� | � ( � ) | +�
Prove that
¿
− ∫ − cos sin � � ��
Proof
∫
tan ��� = ∫ cos sin � � � �
Now,
∴ ∫ tan ��� =�� | sec � | + �
¿ − �� | cos � | + �
¿ −��
|
sec1 �|
+�
¿ − ( �� | 1 | − �� | sec � |) + �
¿ − ( 0 − �� | sec � |) + �
Exercise: Prove that
∫ �
′
( � )
� ( � ) �� =�� | � ( � ) | + �
Prove that
10
¿ ∫ cosec
2
� −cosec � cot �
( cosec � − cot � ) ��
Proof
∫ cosec � �� = ∫ cosec � ( cosec � − cot � )
( cosec � − cot � ) � �
Now,
∴
∫ ����� ��� =�� | ����� � − ��� � | + �
¿ ∫ −cosec � cot � + cosec
2
�
( cosec � − cot � ) ��
Exercise: Prove that
∫ �
′
( � )
� ( � ) �� =�� | � ( � ) | + �
¿ �� | cosec � − cot � | + �