Page 1 of 8
we G Gd kvnxb K‡jR XvKv GBP Gm wm-2022
cÖvK-wbe©vPbx
welq : D”PZi MwYZ 1g I2q cÎ (eûwbe©vPbx) bgybv cÖkœ
mgq -25 wgwbU cyb©gvb -25 [ DËi c‡Îi mwVK Dˇii e„ËwU (0) Kv‡jv Kvwji ej c‡q›U Kjg Øviv fivU Ki ]
1. y = |x + 3| dvsk‡bi †jLwPÎ †KvbwU?
K.
Y
O X
− 3 L.
Y
O 3 X
M.
Y
O X
− 3
N.
Y
O X
3
wb‡Pi wPÎwU jÿ¨ Ki Ges (2-3) bs cÖ‡kœi DËi `vI:
Dc‡ii wP‡Î P, Q we›`y AB †iLv‡K mgvb wZb fv‡M wef³ K‡i|
2. OP †iLvi mgxKiY †KvbwU?
K. x = 6y L. 6x = y M. 2x = 3y N. 3x = 2y 3. AB †iLvi j¤^ mgwØLÛ‡Ki mgxKiY †KvbwU?
K. 3x − y − 16 = 0 L. 3x − y + 16 = 0 M. x − 3y = 16 N. x − 3y + 16 = 0 4. 3x − 4y + 20 = 0 mij‡iLvi mgxKi‡Yi †ÿ‡ÎÑ
i. †iLvwUi Xvj 3 4
ii. g~jwe›`y n‡Z †iLvwUi j¤^ `~iZ¡ 4
iii. †iLvwU y Aÿ‡K (0, 5) we›`y‡Z †Q` K‡i wb‡Pi †KvbwU mwVK?
K. iI ii L. iI iii M. ii I iii N. i,iiI iii 5. (1, 3), (3, 2) we›`y؇qi ms‡hvM †iLvsk‡K e¨vm a‡i Aw¼Z
e„‡Ëi mgxKiY †KvbwU?
K. (x + 1) (x + 3) + (y + 3) (y + 2) = 0 L. (x + 1) (x + 3) − (y + 3) (y + 2) = 0 M. (x − 1) (x − 3) + (y − 3) (y − 2) = 0 N. (x − 1) (x −3) − (y −3) (y − 2) = 0 wb‡Pi Z‡_¨i Av‡jv‡K (6 I 7) bs cÖ‡kœi DËi `vI:
x2 + y2 = 5 GKwU e„‡Ëi mgxKiY|
6. (−1, 2) we›`y‡Z e„ËwUi ¯úk©‡Ki mgxKiY †KvbwU?
K. 2x + y = 5 L. 2y − x = 5 M. x − 2y = 5 N. y − 2x = 5 7. (2, 3) we›`yMvgx e¨v‡mi mgxKiY †KvbwU?
K. 3x − 2y = 0 L. 3x + 2y = 0
M. 3y + 2x = 0 N. 3y − 2x = 0
8. k Gi gvb KZ n‡j 3x + 4y = k †iLvwU x2 + y2 = 10x e„ˇK ¯úk© Ki‡e?
K. – 40, – 10 L. 40, – 10 M. – 40, 10 N. 40, 10 9.hw` 𝑦 = ln(𝑠𝑒𝑐𝑥) nq Z‡e d2y
dx2 = ? K. tan x L. − cot x M. sec2xN. cosec2 x 10. (x) = 2x + 1
x dvsk‡bi †ÿ‡Î (1, 3) we›`y‡Z i. ¯úk©‡Ki mgxKiY x − y + 2 = 0
ii. Awfj‡¤^i mgxKiY x + y − 4 = 0 iii.dvskbwUi †Kv‡bv ¸iægvb I jNygvb †bB|
wb‡Pi †KvbwU mwVK?
K. iI ii L. iI iii M. ii I iii N. i,iiI iii 11. GKwU Mvox †mvRv iv¯Ívq t †m‡K‡Û
3t + 1
8 t2 wgUvi c_
AwZµg K‡i| 5 wgwb‡U Zvi †eM KZ?
K. 4.25m/sec L. 18.125m/sec M. 75m/sec N. 78m/sec 12. lim
x →
1 x + 1
5x2 − 1
x2 = KZ?
K. 1 L. 0 M. 5 N. 2 13. cive„‡Ëi Dc‡Kw›`ªK ˆ`N©¨ KZ?
K. 2 L. 1 M. 1
2 N. 1
2 14. y = 2x + c †iLvwU x2
4 + y2
3 = 1 Dce„‡Ëi ¯úk©K n‡j c Gi gvb KZ?
K. 7 L. √19 M. 25 N. ±√19 15. x2 = 4(1 − y) cive„‡ËiÑ
i. wbqvgK‡iLvi mgxKiY y = 2 ii. kxl©we›`y (0, 1)
iii. Dc‡Kw›`ªK j‡¤^i ˆ`N©¨ 1 wb‡Pi †KvbwU mwVK?
K. i I ii L.ii I iii M. i I iii N. i, ii I iii
Y
x + 3y − 12 = 0 O
Q P
A X B
bgybv cÖkœ-1
Page 2 of 8 wb‡Pi DÏxc‡Ki Av‡jv‡K 16 I 17 bs cÖ‡kœi DËi `vI:
16. cive„‡Ëi Aÿ‡iLvi mgxKiY †KvbwU?
K. x + y = 0 L. x – y + 2 = 0 M. x – y – 2 = 0 N. x – y = 0 17. cive„‡Ëi Dc‡Kw›`ªK j‡¤^i ˆ`N©¨ KZ?
K. 2 L. 1 M. 1
2 N. 1 2 18| x2−2x−1=0mgxKi‡Yi-
(i) GKwU g~j 1− 2 (ii) g~jØq Ag~j`
(iii) g~jØq ev¯Íe I Amgvb wb‡Pi †KvbwU mwVK?
K. i I ii L. ii I iii M. i I iii N. i, ii I iii
19| 4x2+3x+7=0mgxKi‡Yi g~jØq I n‡j, +
1
1 Gi gvb KZ?
(K) 3
−7 (L) 7
−3 (M) 7
3 (N) 3 7 20| 3x2−2x+1=0mgxKi‡Yi g~j؇qi e‡M©i mgwó KZ?
(K) 3
−2 (L) 9
−2 (M) 3
2 (N) 9 2
21. ax + bx + c = 0 Gi GKwU g~j k~b¨ n‡j c Gi gvb KZ?
K. 1 L. 0 M. 2 N. 3 22. sin−1x Gi ‡jLwPÎ wb‡Pi †KvbwU ?
(K) (L)
(M) (N)
23. 1
2 cosec– 11 + x2
2x Gi gvb KZ?
K. 2 tan– 1x L. tan– 1x M. 1
2 sin– 1x N. 1
2 tan– 1x wb‡Pi Z‡_¨i Av‡jv‡K 24 I 25 bs cÖ‡kœi DËi `vI:
A = cos−1x, B = cos−1y 24. A = 0 n‡j wb‡Pi †KvbwU mwVK?
K. x = 1 L. x = 2 M. x = 3 N. x = 4 25. A − B =
2 n‡j wb‡Pi †KvbwU mwVK?
K. x 1 − y2 + y 1 − x2 = 1 L. x 1 − y2 − y 1 − x2 = 1 M. xy + (1 − x2)(1 − y2) = 0 N. xy − (1 − x2)(1 − y2) = 0
z
p(x, y)
x + y + 1 = 0
M
s(−1, 1)
Y x x
Y
x Y
x Y
Page 3 of 8 we G Gd kvnxb K‡jR XvKv
bgybv cÖkœ
cÖvK wbe©vPwb cixÿv Õ 2021
welq : D”PZi MwYZ, 1g I 2q cÎ (eûwbe©vPbx )
mgq : 25 wgwbU| c~Y©gvb : 25 [ DËi c‡Îi mwVK Dˇii e„ËwU (0) Kv‡jv Kvwji ej c‡q›U Kjg Øviv fivU Ki ]
1|
0 lim
→
x (1+3x)(3x+7)/x
K. e L. e2 M. e27 N. e21 2| y = x2 – x + 1 eµ‡iLvi x = 2 we›`y‡Z Awfj‡¤^i Xvj-
K. 3 L. -3 M.
3
1 N.
3
−1 3| ax2+bx+c ivwkwU c~Y©eM© n‡e KLb ?
(K) b2 −4ac0 n‡j (L) b2−4ac0 n‡j (M) b2−4ac c~Y©eM© n‡j (N) b2−4ac=0 n‡j
4| tcwieZ©bkxj n‡j,
+ −
t t 1 t, t 1
P Gi mÂvi c‡_i
mgxKiY-
K. mij‡iLv L. e„Ë
M. cive„Ë N. Awae„Ë 5| (−2,3) we›`y n‡Z 4x−3y−10=0 †iLvi j¤^ `~iZ¡ †KvbwU
?
K. 5
23 L.
5
27 M.
5
27 N.
5
13 wb‡Pi Z‡_¨i Av‡jv‡K (6-7) bs c‡Ökœi DËi `vI:
0 7 y 3
x− + = I 2x−9y+8=0`yBwU mij‡iLvi mgxKiY|
6. cÖ_g †iLvwU x-Aÿ‡K †Kvb we›`y‡Z †Q` K‡i ? K. (−7,0) L. (7,0)
M.
− ,0 3
7 N.
,0 3
7 7. †iLv؇qi †Q` we›`yi ¯’vbv¼ †KvbwU ?
K. (13,2) L. (−13,−2) M. (13,−2) N. (−13,2) 8. x=0,y=0Ges 3x+4y=12 †iLv wZbwU Øviv MwVZ wÎfz‡Ri †ÿÎdj †KvbwU ?
K. 4 eM© GKK L. 6 eM© GKK M. 8 eM© GKK N. 10 eM© GKK 9. 4x−3y=0 GKwU mij‡iLvi mgxKiY n‡j,
) i
( (1, 1) we›`ywU †iLvwUi Dci Aew¯’Z (ii) ‡iLvwU g~j we›`yMvgx
) iii
( (3, 0) we›`y †_‡K †iLvwUi j¤^ `~iZ¡
5 12 GKK Dc‡ii evK¨¸wji g‡a¨ †KvbwU mwVK ?
K. iIii L. iiIiii
M. iIiii N. i,iiI
10. x2 + y2 + 8x + 2ky + c = 0 e„Ë Dfq Aÿ‡K ¯úk©
Ki‡j
k Ges c Gi gvb wb‡Pi †KvbwU?
K. k = 16, c = 4 L. k = 4, c = 4 M. k = + 4, c = 16 N. k = 4, c = 4
11. (1, −1) we›`y †_‡K 2x2 + 2y2 − x + 3y + 1 = 0 e„‡Ë Aw¼Z ¯úk©‡Ki ˆ`N©¨ wb‡Pi †KvbwU?
K. 2 2 L. 3
2 M. 1
2 N. 1
2 2 12. 5x2 + 5y2 – 10x + 30y + 49 = 0 e„ËwUi GKwU
¯úk©K 2x + ky = 4 n‡j, k Gi gvb †KvbwU?
K. 1 L. -2 M. 2 N. -3 13| y = tan−1 2x
1 − x2 n‡j, dy dx mgvb−
K. 1
2(1 − x2) L. 2 (1 − x2)
M. 2
(1 + x2) N. 2 1 − x2 14| lim
x→{ln (2x −1) − ln (x + 5)} Gi gvb KZ?
K. 4 ln3 L. ln3 M. ln2 N. ln(−3)
15| 𝑥 Gi †Kvb ev¯Íe gv‡bi Rb¨ 3𝑥 − 𝑥2+ 4 Gi Mwió gvb -
K. 17
7 L. 21
4 M. 25
4 N.
−15 4
16| 6𝑥2− 5𝑥 + 1 = 0 mgxKi‡Yi gyjØq 𝑎, 𝛽 n‡j 1
𝑎,1
𝛽 g~jwewgó mgxKiY †KvbwU?
K. 𝑥2− 5𝑥 + 6 = 0 L. 𝑥2 − 4𝑥 + 3 = 0 M. 𝑥2− 11𝑥 + 30 = 0
N. 𝑥2− 2𝑥 + 1 = 0
iii
bgybv cÖkœ-2
Page 4 of 8 17| ‡Kvb wØNvZ mgxKi‡Yi GKwU g~j 2 + 3𝑖 n‡j, wØNvZ
mgxKiY wb‡¤œi †KvbwU?
K. 𝑥2− 4𝑥 − 13 − 0 L. 𝑥2− 2𝑥 − 3 = 0 M. 𝑥2+ 2𝑥 − 3 = 0 N. 𝑥2+ 2𝑥 + 3 = 0
18| 𝑥2+ 𝑎𝑥 + 𝑏 = 0 mgxKi‡Yi GKwU g~j 1 − 𝑖 n‡j, 𝑎 Ges 𝑏 Gi gvb wb‡¤œi †Kvb `yBwU ?
K. 𝑎 = 2, 𝑏 = 1 L. 𝑎 = −2, 𝑏 = 2 M. 𝑎 = 2, 𝑏 = 2 N. 𝑎 = 2, 𝑏 = −2 19| cive„ËwUi-
(i) ZGi ¯’vbv¼ (-3,-4) (ii) MZ Gi Xvj=
4
−3
(iii) KwYKvwUi mgxKiY 1 9 y 4
x2 + 2 =
wb‡Pi †KvbwU mwVK?
(K) i I ii (L) i I iii
(M) ii I iii (N) i,ii I iii
20| cive„ËwUi mgxKiY y2 =−9x n‡j, SP= ? (K) 9 (L) -9 (M)
2
9 (N) 2
−9 21| 5x2 +6y2 =30 Dce„‡Ëi Dr‡Kw›`ªKZv KZ ? (K) 6 (L)
6
1 (M) 3
2 (N) 3 4
22| sec2(tan−14)+tan2(sec−13)Gi gvb KZ ?
(K) 7 (L) 5
(M) 12 (N) 25
23| b
tan a
sin −1 Gi gvb- K.
2
2 b
a a
+ L.
a b a2+ 2
M. 2 2
b a
b
+ N.
b b q2+ 2
wb‡Pi DÏxc‡Ki Av‡jv‡K 24 I 25 bs cÖ‡kœi DËi `vI:
x 2 cos
sin 3
y= −1 + −1 mgxKi‡Y-
24| y=900 n‡j, x Gi gvb †KvbwU ? K.
2
1 L.
2
1 M.
2
3 N.
3
2
25| 31
3
x= 3 n‡j, y Gi gvb †KvbwU ? K.
7 3 tan 15
−
− L.
3 tan−1 11
M.
11
tan−1 3 N.
3 5
tan−1 7
Page 5 of 8 weGGd kvnxb K‡jR XvKv
welq †KvW: 2 6 5
mgq ⎯25 wgwbU D”PZi MwYZ (eûwbe©vPনী) c~Y©gvb ⎯ 25
প্রাক-নির্ বাচিী িমুিা প্রশ্ন
[`ªóe¨: mieivnK…Z eûwbe©vPwb Afxÿvi DËic‡Î cÖ‡kœi µwgK b¤^‡ii wecix‡Z cÖ`Ë eY©m¤^wjZ e„Ëmg~n n‡Z mwVK/ m‡e©vrK…ó Dˇii e„ËwU () ej c‡q›U Kjg Øviv m¤ú~Y© fivU Ki| cÖwZwU cÖ‡kœi gvb 1|]
wb‡Pi Z‡_¨i Av‡jv‡K (১ I ২) bs cÖ‡kœi DËi `vI
(3k + 1)x2 + (11 + k)x + 9 = 0 GKwU wØNvZ mgxKiY,
†hLv‡b k GKwU aªeK|
১. GKwU g~j 1 n‡j k Gi gvb KZ?
A ক) – 21
4 খ) –21 গ) 21
4 ঘ)21
২. g~jØq mgvb n‡j k Gi GKwU gvb KZ?
A ক)–86 খ)–85 গ)85 ঘ)86
৩. x2 − 7x + 12 = 0 mgxKi‡Yi g~jØq I n‡j +
I g~jwewkó mgxKiY †KvbwU?
A ক) x2 − 19x + 84 = 0 খ) x2 + 14x − 144 = 0 গ) x2 − 14x + 144 = 0 ঘ) x2 + 19x − 84 = 0 ৪.
wP‡Îi ⎯
i. dvsk‡bi †Wv‡gb (− , ) ii.dvsk‡bi †iÄ
− 2
2 e¨ewa‡Z Aew¯’Z iii.y GKwU wecixZ e„Ëxq dvskb
A wb‡Pi †KvbwU mwVK?
ক)i I ii খ)i I iii গ)ii I iii ঘ)i, ii I iii
৫. tan−1x + cot−1x = ?
A ক)0 খ)
4 গ)
3 ঘ)
2
৬. ntan−1x = tan−1nx − xn
1 − nx2 n‡j n Gi gvb †KvbwU?
A ক)1 খ)2 গ)3 ঘ)4
৭. tanx + tan2x + tan 3x = 0 mgxKi‡Yi mgvavb bq
†KvbwU?
C ক)0 খ)
4 গ)
3 ঘ)2
3
wb‡Pi Z‡_¨i Av‡jv‡K (৮ I ৯) bs cÖ‡kœi DËi `vI :
৮. AB Gi mgxKiY †KvbwU?
ক)x + y = 2 2 খ)x − y = 2 2 গ)x + y
= 4 ঘ)x − y = 4
৯. OAP Gi †ÿÎdj KZ eM© GKK?
ক)4 2 খ)4 গ)2 2 ঘ)2
1০. d
dx (3sin– 1x) = KZ?
ক)3sin– 1x
1 – x2 খ)3sin– 1x.ln3
1 – x2 গ)3sin–
1x.ln3 ঘ) ln3 1 – x2
O X
2 B
O A
45
P
bgybv cÖkœ-3
Page 6 of 8 ১1. lim
y→0 1 − e
ln (1 + y) = ? [0 < y < 1]
ক)0 খ)1 গ)2 ঘ)
wb‡Pi Z‡_¨i Av‡jv‡K (১2-১৪) bs cÖ‡kœi DËi `vI:
x2 − 4x + y2 = 140 GKwU e„‡Ëi mgxKiY|
১2. e„‡Ëi e¨vmva© KZ?
ক)2 খ)8 গ)10 ঘ)12
১৩. (15, 0) we›`y †_‡K cÖ`Ë e„‡Ë ¯úk©‡Ki ˆ`N©¨ KZ?
ক)5 খ)10 গ)12 ঘ)13
১৪. cÖ`Ë mgxKiYwUi †ÿ‡ÎÑ
i. e„‡Ëi e¨vm 12 ii. e„ËwUi †K›`ª x-A‡ÿi Dci Aew¯’Z iii. e„ËwU (2, 12) we›`yMvgx
wb‡Pi †KvbwU mwVK?
ক)i I ii খ)i I iii গ)ii I iii ঘ)i, ii I iii
১৫. †Kv‡bv mgxKi‡Yi GKwU g~j 1 − i 2 n‡j mgxKiYwU n‡eÑ
ক) x2 − 2x + 3 = 0 খ)x2
+ 2x + 3 = 0
গ) x2 − 3x + 2 = 0 ঘ)x2 + 3x + 2 = 0
১৬. †Kv‡bv we›`yi Kv‡Z©mxq ¯’vbv¼ (− 1, 3) n‡j we›`ywUi
†cvjvi ¯’vbv¼ KZ n‡e?
B ক)
2
3 খ)
2 2
3 গ)
2 −
3 ঘ)
4 2
3
১৭. (2, −3) †K›`ªwewkó e„ËwU x Aÿ‡K ¯úk© Ki‡j Zvi mgxKiY wb‡Pi †KvbwU?
A ক)(x − 2)2 + (y − 3)2 = 32 খ) (x + 2)2 + (y + 3)2 = 2 গ) (x + 2)2 + (y − 3)2 = 22
ঘ) (x − 2)2 + (y + 3)2 = 32
১৮. A (1, −2) I B(−8, 1) we›`y؇qi ms‡hvRK †iLvsk BA
†K 2:1 Abycv‡Z AšÍwe©f³Kvix we›`yi ¯’vbv¼ wb‡Pi †KvbwU?
A ক) (−5, −1) খ) (−2, −1) গ)
(−2, 0) ঘ) (−5, 0)
1৯. 6x − 8y + 6 = 0 †iLvi Dci j¤^ Ges g~jwe›`y n‡Z 2 GKK `~‡i Aew¯’Z mij‡iLvi mgxKiYÑ
A ক)3x − 4y 10 = 0 খ)4x + 3y 10 = 0 গ) 3x + 4y 10 = 0
ঘ)4x − 3y 10 = 0
২০. 2x − 7y = 3 Ges 7x − 2y = 5 †iLv `yBwUi AšÍM©Z ¯’~j
†Kv‡Yi mgwØLЇKi mgxKiYÑ A ক)5x + 5y + 2 = 0
খ)9x − 9y + 8 = 0 গ) 9x − 9y − 8 = 0
ঘ)5x + 5y − 2 = 0
DÏxc‡Ki Av‡jv‡K 2১ I 2২ bs cÖ‡kœi DËi `vI : 25x2 − 16y2 + 400 = 0 GKwU Awae„‡Ëi mgxKiY|
2১. Awae„‡Ëi kxl©we›`y؇qi ¯’vbv¼ †KvbwU?
ক) ( 2, 0) খ) (0, 2)
গ) (0, 5) ঘ) ( 5,
0)
2২. Awae„ËwUi Dc‡Kw›`ªK j‡¤^i ˆ`N©¨ KZ?
ক) 8
5 খ)5
8 গ)25
2 ঘ)32
5 2৩. (x − 1)2
9 + y2
16 = 1 Dce„‡ËiÑ i. †K‡›`ªi ¯’vbv¼ (1, 0) ii. Dc‡K‡›`ªi ¯’vbv¼ (0, 7) iii. e„nr A‡ÿi ˆ`N©¨ 8
wb‡Pi †KvbwU mwVK?
ক) i I ii খ)ii I iii গ)i I iii ঘ)i, ii I iii
2৪. x2 + xy + y2 = 1 n‡j, dy dx = ? ক) – 2x
y + 2x খ)– (2x + y)
2y + x গ) – 2x
2y + x ঘ) – x y + 2x 2৫. d
dx
(
tan ex2)
= KZ?A ক)− x ex2 sec2ex2
tan ex2 খ)xex2sec2ex2 2 tanex2 গ)ex2sec2ex2
tanex2 ঘ)xex2sec2ex2 tanex2
Page 7 of 8
weGGd kvnxb K‡jR XvKv D”PZi MwYZ eûwbe©vPwb Afxÿv
mgq-25 wgwbU gvb-25 welq †KvW: 2 6 5
1. 5x − 5 3y + 2 = 0 Gi 3 3x + 3y − 4 = 0 mij‡iLv؇qi ga¨eZ©x †KvY KZ?
30 45 60 90
2. GKwU সামান্তরিকেি kxl© we›`y¸‡jv h_vµ‡g (1, 1), (4, 4), (4, 8) Ges (1, 5) n‡j Gi GKwU K‡Y©i ˆ`N©¨ wb‡Pi †KvbwU?
3 2 4 10 8
3. d
dx (5x) = KZ?
A x5x−1 5x ln5x 5x ln5 x ln5x
4. 2x2 + 2y2 − 4x − 7y + 1 = 0 e„ËwUi e¨vmva© KZ?
57 4
73
4 61 4 69
4
wb‡Pi Z‡_¨i Av‡jv‡K (5 I 6) bs cÖ‡kœi DËi `vI :
(1, 3) we›`y n‡Z x 3 − y + 8 = 0 mij‡iLvi Dci Aw¼Z j¤^‡iLvi `~iZ¡ P Ges j¤^‡iLvwU x-A‡ÿi mv‡_ †KvY Drcbœ K‡i|
5. P Gi gvb KZ?
2 4 10 20
6. Gi gvb KZ?
30 60
120 150
7. x Gi †Kvb gv‡bi Rb¨ (x) = 1 3 x3 − 5
2 x2 + 6x − 1 Gi Pig gvb cvIqv hvq?
A 2, 3 −2, 3
2, −3 −2, −3
8. c Gi gvb KZ n‡j x2 + y2 − 8x + 6y + c = 0 e„ËwU y Aÿ‡K ¯úk© K‡i?
A 4 9
2 18
9. x2 + y2 − 6x − 16 = 0 e„ËwUiÑ i. e¨vmva© 5 GKK
ii. †K›`ª x A‡ÿi Dci Aew¯’Z
iii.(0,2) we›`y‡Z ¯úk©‡Ki mgxKiY 3x − 2y + 16 = 0 wb‡Pi †KvbwU mwVK?
i I ii i I iii ii I iii i, ii I iii
10. lim
x→0 (1 + 5x) 3x + 2
x Gi gvb KZ?
1
e10 6
11. x2 + y2 = 81 e„‡Ëi GKwU R¨v (− 2, 3) we›`y‡Z সমরিখরিত n‡j R¨v-wUi mgxKiY †KvbwU?
2x − 3y + 13 = 0 2x + 3y − 13 = 0 2x + 3y − 6 = 0 3x + 2y − 13 = 0
12. 2x3 − 3x − 5 = 0 mgxKi‡Yi g~jÎq , , n‡j,
Gi gvb KZ?
−3
2 0 3
2 5 2
13. wb‡Pi †KvbwU y2 = 8x cive„‡Ëi ¯úk©K?
y = x + 2 y = x + 1 y = x − 1 y = x − 2 14. cos tan−1 cot sin−1x Gi gvb KZ?
− x
2 − x x −
2 x
15. 2 + i 3 g~jwewkó mgxKiYwU n‡eÑ
x2 + 4x – 7 = 0 x2 – 4x + 7 = 0 x2 – 3x + 2 = 0 x2 + 3x – 2 = 0 16. sin−1x + cos−1y =
2 n‡jÑ i. x = y = 1
2 ii. x2 + y2 = 1
iii. x 1 − y2 + y 1 − x2 = 1 wb‡Pi †KvbwU mwVK?
i I ii ii I iii i I iii i, ii I iii
17. x2 − 3y2 − 2x = 8 Awae„‡Ëi Dc‡Kw›`ªK j‡¤^i ˆ`N©¨ KZ?
−2 0
18. sin−1 (− cos x) + sin−1 (cos 3x) = KZ?
− 2x − 3x
+ 2x 3x
bgybv cÖkœ-4
Page 8 of 8 19. †Kv‡bv Dce„‡Ëi Dc‡Kw›`ªK j¤^ Dce„ËwUi e„n`v‡ÿi A‡a©K n‡j
Dr‡Kw›`ªKZv KZ?
1 2
1 2
2 2
20. sin
2sin– 11
2 = ? 1
4
3 4 3
2
5 2
4x2 − 8(p − 2)x + 1 = 0 wØNvZ mgxKi‡Yi Av‡jv‡K (21 I 22) bs cÖ‡kœi DËi `vI:
21. DÏxc‡Ki mgxKi‡Yi g~jØq বাস্তব Ges mgvb n‡j, p Gi GKwU gvbÑ
2 5
2 3 4
3
5 2
22. DÏxc‡Ki mgxKi‡Yi g~jØq Ag~j` I Amgvb n‡j p Gi gvb wb‡Pi †KvbwU?
2 7
4 9
4 3
23. x2 a2 + y2
b2 = 1 KwYKwUÑ i. Awae„Ë n‡e hLb a2 = b2 ii. Dce„Ë n‡e, hLb a b iii. e„Ë n‡e hLb a = b wb‡Pi †KvbwU mwVK?
i I ii i I iii i, ii I iii ii I iii 24. d
dx {sin−1 (cos x)} = ?
−1 x 1
x 1
25. 4sin−1x + cos−1x = n‡j, x Gi gvb wb‡Pi †KvbwU?
0 1
2 3
2 1