• Tidak ada hasil yang ditemukan

Pre-Test Exam-2022_H. Maths_MCQ_BV_Sample Questions

N/A
N/A
Protected

Academic year: 2023

Membagikan "Pre-Test Exam-2022_H. Maths_MCQ_BV_Sample Questions"

Copied!
8
0
0

Teks penuh

(1)

Page 1 of 8

we G Gd kvnxb K‡jR XvKv GBP Gm wm-2022

cÖvK-wbe©vPbx

welq : D”PZi MwYZ 1g I2q cÎ (eûwbe©vPbx) bgybv cÖkœ

mgq -25 wgwbU cyb©gvb -25 [ DËi c‡Îi mwVK Dˇii e„ËwU (0) Kv‡jv Kvwji ej c‡q›U Kjg Øviv fivU Ki ]

1. y = |x + 3| dvsk‡bi †jLwPÎ †KvbwU?

K.

Y

O X

− 3 L.

Y

O 3 X

M.

Y

O X

− 3

N.

Y

O X

3

wb‡Pi wPÎwU jÿ¨ Ki Ges (2-3) bs cÖ‡kœi DËi `vI:

Dc‡ii wP‡Î P, Q we›`y AB †iLv‡K mgvb wZb fv‡M wef³ K‡i|

2. OP †iLvi mgxKiY †KvbwU?

K. x = 6y L. 6x = y M. 2x = 3y N. 3x = 2y 3. AB †iLvi j¤^ mgwØLÛ‡Ki mgxKiY †KvbwU?

K. 3x − y − 16 = 0 L. 3x − y + 16 = 0 M. x − 3y = 16 N. x − 3y + 16 = 0 4. 3x − 4y + 20 = 0 mij‡iLvi mgxKi‡Yi †ÿ‡ÎÑ

i. †iLvwUi Xvj 3 4

ii. g~jwe›`y n‡Z †iLvwUi j¤^ `~iZ¡ 4

iii. †iLvwU y Aÿ‡K (0, 5) we›`y‡Z †Q` K‡i wb‡Pi †KvbwU mwVK?

K. iI ii L. iI iii M. ii I iii N. i,iiI iii 5. (1, 3), (3, 2) we›`y؇qi ms‡hvM †iLvsk‡K e¨vm a‡i Aw¼Z

e„‡Ëi mgxKiY †KvbwU?

K. (x + 1) (x + 3) + (y + 3) (y + 2) = 0 L. (x + 1) (x + 3) − (y + 3) (y + 2) = 0 M. (x − 1) (x − 3) + (y − 3) (y − 2) = 0 N. (x − 1) (x −3) − (y −3) (y − 2) = 0 wb‡Pi Z‡_¨i Av‡jv‡K (6 I 7) bs cÖ‡kœi DËi `vI:

x2 + y2 = 5 GKwU e„‡Ëi mgxKiY|

6. (−1, 2) we›`y‡Z e„ËwUi ¯úk©‡Ki mgxKiY †KvbwU?

K. 2x + y = 5 L. 2y − x = 5 M. x − 2y = 5 N. y − 2x = 5 7. (2, 3) we›`yMvgx e¨v‡mi mgxKiY †KvbwU?

K. 3x − 2y = 0 L. 3x + 2y = 0

M. 3y + 2x = 0 N. 3y − 2x = 0

8. k Gi gvb KZ n‡j 3x + 4y = k †iLvwU x2 + y2 = 10x e„ˇK ¯úk© Ki‡e?

K. – 40, – 10 L. 40, – 10 M. – 40, 10 N. 40, 10 9.hw` 𝑦 = ln⁡(𝑠𝑒𝑐𝑥) nq Z‡e d2y

dx2 = ? K. tan x L. − cot x M. sec2xN. cosec2 x 10. (x) = 2x + 1

x dvsk‡bi †ÿ‡Î (1, 3) we›`y‡Z i. ¯úk©‡Ki mgxKiY x − y + 2 = 0

ii. Awfj‡¤^i mgxKiY x + y − 4 = 0 iii.dvskbwUi †Kv‡bv ¸iægvb I jNygvb †bB|

wb‡Pi †KvbwU mwVK?

K. iI ii L. iI iii M. ii I iii N. i,iiI iii 11. GKwU Mvox †mvRv iv¯Ívq t †m‡K‡Û 

 3t + 1

8 t2 wgUvi c_

AwZµg K‡i| 5 wgwb‡U Zvi †eM KZ?

K. 4.25m/sec L. 18.125m/sec M. 75m/sec N. 78m/sec 12. lim

x →  

 1 x + 1 

 5x2 − 1

x2 = KZ?

K. 1 L. 0 M. 5 N. 2 13. cive„‡Ëi Dc‡Kw›`ªK ˆ`N©¨ KZ?

K. 2 L. 1 M. 1

2 N. 1

2 14. y = 2x + c †iLvwU x2

4 + y2

3 = 1 Dce„‡Ëi ¯úk©K n‡j c Gi gvb KZ?

K. 7 L. √19 M. 25 N. ±√19 15. x2 = 4(1 − y) cive„‡ËiÑ

i. wbqvgK‡iLvi mgxKiY y = 2 ii. kxl©we›`y (0, 1)

iii. Dc‡Kw›`ªK j‡¤^i ˆ`N©¨ 1 wb‡Pi †KvbwU mwVK?

K. i I ii L.ii I iii M. i I iii N. i, ii I iii

Y

x + 3y − 12 = 0 O

Q P

A X B

bgybv cÖkœ-1

(2)

Page 2 of 8 wb‡Pi DÏxc‡Ki Av‡jv‡K 16 I 17 bs cÖ‡kœi DËi `vI:

16. cive„‡Ëi Aÿ‡iLvi mgxKiY †KvbwU?

K. x + y = 0 L. x – y + 2 = 0 M. x – y – 2 = 0 N. x – y = 0 17. cive„‡Ëi Dc‡Kw›`ªK j‡¤^i ˆ`N©¨ KZ?

K. 2 L. 1 M. 1

2 N. 1 2 18| x2−2x−1=0mgxKi‡Yi-

(i) GKwU g~j 1− 2 (ii) g~jØq Ag~j`

(iii) g~jØq ev¯Íe I Amgvb wb‡Pi †KvbwU mwVK?

K. i I ii L. ii I iii M. i I iii N. i, ii I iii

19| 4x2+3x+7=0mgxKi‡Yi g~jØq I n‡j, +

 1

1 Gi gvb KZ?

(K) 3

−7 (L) 7

−3 (M) 7

3 (N) 3 7 20| 3x2−2x+1=0mgxKi‡Yi g~j؇qi e‡M©i mgwó KZ?

(K) 3

−2 (L) 9

−2 (M) 3

2 (N) 9 2

21. ax + bx + c = 0 Gi GKwU g~j k~b¨ n‡j c Gi gvb KZ?

K. 1 L. 0 M. 2 N. 3 22. sin1x Gi ‡jLwPÎ wb‡Pi †KvbwU ?

(K) (L)

(M) (N)

23. 1

2 cosec– 11 + x2

2x Gi gvb KZ?

K. 2 tan– 1x L. tan– 1x M. 1

2 sin– 1x N. 1

2 tan– 1x wb‡Pi Z‡_¨i Av‡jv‡K 24 I 25 bs cÖ‡kœi DËi `vI:

A = cos−1x, B = cos−1y 24. A = 0 n‡j wb‡Pi †KvbwU mwVK?

K. x = 1 L. x = 2 M. x = 3 N. x = 4 25. A − B = 

2 n‡j wb‡Pi †KvbwU mwVK?

K. x 1 − y2 + y 1 − x2 = 1 L. x 1 − y2 − y 1 − x2 = 1 M. xy + (1 − x2)(1 − y2) = 0 N. xy − (1 − x2)(1 − y2) = 0

z

p(x, y)

x + y + 1 = 0

M

s(−1, 1)

Y x x

Y

x Y

x Y

(3)

Page 3 of 8 we G Gd kvnxb K‡jR XvKv

bgybv cÖkœ

cÖvK wbe©vPwb cixÿv Õ 2021

welq : D”PZi MwYZ, 1g I 2q cÎ (eûwbe©vPbx )

mgq : 25 wgwbU| c~Y©gvb : 25 [ DËi c‡Îi mwVK Dˇii e„ËwU (0) Kv‡jv Kvwji ej c‡q›U Kjg Øviv fivU Ki ]

1|

0 lim

x (1+3x)(3x+7)/x

K. e L. e2 M. e27 N. e21 2| y = x2 – x + 1 eµ‡iLvi x = 2 we›`y‡Z Awfj‡¤^i Xvj-

K. 3 L. -3 M.

3

1 N.

3

−1 3| ax2+bx+c ivwkwU c~Y©eM© n‡e KLb ?

(K) b2 −4ac0 n‡j (L) b2−4ac0 n‡j (M) b2−4ac c~Y©eM© n‡j (N) b2−4ac=0 n‡j

4| tcwieZ©bkxj n‡j,

+

t t 1 t, t 1

P Gi mÂvi c‡_i

mgxKiY-

K. mij‡iLv L. e„Ë

M. cive„Ë N. Awae„Ë 5| (−2,3) we›`y n‡Z 4x3y10=0 †iLvi j¤^ `~iZ¡ †KvbwU

?

K. 5

23 L.

5

27 M.

5

27 N.

5

13 wb‡Pi Z‡_¨i Av‡jv‡K (6-7) bs c‡Ökœi DËi `vI:

0 7 y 3

x + = I 2x9y+8=0`yBwU mij‡iLvi mgxKiY|

6. cÖ_g †iLvwU x-Aÿ‡K †Kvb we›`y‡Z †Q` K‡i ? K. (−7,0) L. (7,0)

M.

− ,0 3

7 N.

,0 3

7 7. †iLv؇qi †Q` we›`yi ¯’vbv¼ †KvbwU ?

K. (13,2) L. (13,2) M. (13,2) N. (−13,2) 8. x=0,y=0Ges 3x+4y=12 †iLv wZbwU Øviv MwVZ wÎfz‡Ri †ÿÎdj †KvbwU ?

K. 4 eM© GKK L. 6 eM© GKK M. 8 eM© GKK N. 10 eM© GKK 9. 4x3y=0 GKwU mij‡iLvi mgxKiY n‡j,

) i

( (1, 1) we›`ywU †iLvwUi Dci Aew¯’Z (ii) ‡iLvwU g~j we›`yMvgx

) iii

( (3, 0) we›`y †_‡K †iLvwUi j¤^ `~iZ¡

5 12 GKK Dc‡ii evK¨¸wji g‡a¨ †KvbwU mwVK ?

K. iIii L. iiIiii

M. iIiii N. i,iiI

10. x2 + y2 + 8x + 2ky + c = 0 e„Ë Dfq Aÿ‡K ¯úk©

Ki‡j

k Ges c Gi gvb wb‡Pi †KvbwU?

K. k = 16, c = 4 L. k = 4, c = 4 M. k = + 4, c = 16 N. k =  4, c = 4

11. (1, −1) we›`y †_‡K 2x2 + 2y2 − x + 3y + 1 = 0 e„‡Ë Aw¼Z ¯úk©‡Ki ˆ`N©¨ wb‡Pi †KvbwU?

K. 2 2 L. 3

2 M. 1

2 N. 1

2 2 12. 5x2 + 5y2 – 10x + 30y + 49 = 0 e„ËwUi GKwU

¯úk©K 2x + ky = 4 n‡j, k Gi gvb †KvbwU?

K. 1 L. -2 M. 2 N. -3 13| y = tan−1 2x

1 − x2 n‡j, dy dx mgvb−

K. 1

2(1 − x2) L. 2 (1 − x2)

M. 2

(1 + x2) N. 2 1 − x2 14| lim

x→{ln (2x −1) − ln (x + 5)} Gi gvb KZ?

K. 4 ln3 L. ln3 M. ln2 N. ln(−3)

15| 𝑥 Gi †Kvb ev¯Íe gv‡bi Rb¨ 3𝑥 − 𝑥2+ 4 Gi Mwió gvb -

K. 17

7 L. 21

4 M. 25

4 N.

−15 4

16| 6𝑥2− 5𝑥 + 1 = 0 mgxKi‡Yi gyjØq 𝑎, 𝛽 n‡j 1

𝑎,1

𝛽 g~jwewgó mgxKiY †KvbwU?

K. 𝑥2− 5𝑥 + 6 = 0 L. 𝑥2 − 4𝑥 + 3 = 0 M. 𝑥2− 11𝑥 + 30 = 0

N. 𝑥2− 2𝑥 + 1 = 0

iii

bgybv cÖkœ-2

(4)

Page 4 of 8 17| ‡Kvb wØNvZ mgxKi‡Yi GKwU g~j 2 + 3𝑖 n‡j, wØNvZ

mgxKiY wb‡¤œi †KvbwU?

K. 𝑥2− 4𝑥 − 13 − 0 L. 𝑥2− 2𝑥 − 3 = 0 M. 𝑥2+ 2𝑥 − 3 = 0 N. 𝑥2+ 2𝑥 + 3 = 0

18| 𝑥2+ 𝑎𝑥 + 𝑏 = 0 mgxKi‡Yi GKwU g~j 1 − 𝑖 n‡j, 𝑎 Ges 𝑏 Gi gvb wb‡¤œi †Kvb `yBwU ?

K. 𝑎 = 2, 𝑏 = 1 L. 𝑎 = −2, 𝑏 = 2 M. 𝑎 = 2, 𝑏 = 2 N. 𝑎 = 2, 𝑏 = −2 19| cive„ËwUi-

(i) ZGi ¯’vbv¼ (-3,-4) (ii) MZ Gi Xvj=

4

−3

(iii) KwYKvwUi mgxKiY 1 9 y 4

x2 + 2 =

wb‡Pi †KvbwU mwVK?

(K) i I ii (L) i I iii

(M) ii I iii (N) i,ii I iii

20| cive„ËwUi mgxKiY y2 =−9x n‡j, SP= ? (K) 9 (L) -9 (M)

2

9 (N) 2

−9 21| 5x2 +6y2 =30 Dce„‡Ëi Dr‡Kw›`ªKZv KZ ? (K) 6 (L)

6

1 (M) 3

2 (N) 3 4

22| sec2(tan14)+tan2(sec13)Gi gvb KZ ?

(K) 7 (L) 5

(M) 12 (N) 25

23| b

tan a

sin 1 Gi gvb- K.

2

2 b

a a

+ L.

a b a2+ 2

M. 2 2

b a

b

+ N.

b b q2+ 2

wb‡Pi DÏxc‡Ki Av‡jv‡K 24 I 25 bs cÖ‡kœi DËi `vI:

x 2 cos

sin 3

y= 1 + 1 mgxKi‡Y-

24| y=900 n‡j, x Gi gvb †KvbwU ? K.

2

1 L.

2

1 M.

2

3 N.

3

2

25| 31

3

x= 3 n‡j, y Gi gvb †KvbwU ? K.

7 3 tan 15

L.

3 tan1 11

M.

11

tan1 3 N.

3 5

tan1 7

(5)

Page 5 of 8 weGGd kvnxb K‡jR XvKv

welq †KvW: 2 6 5

mgq ⎯25 wgwbU D”PZi MwYZ (eûwbe©vPনী) c~Y©gvb ⎯ 25

প্রাক-নির্ বাচিী িমুিা প্রশ্ন

[`ªóe¨: mieivnK…Z eûwbe©vPwb Afxÿvi DËic‡Î cÖ‡kœi µwgK b¤^‡ii wecix‡Z cÖ`Ë eY©m¤^wjZ e„Ëmg~n n‡Z mwVK/ m‡e©vrK…ó Dˇii e„ËwU () ej c‡q›U Kjg Øviv m¤ú~Y© fivU Ki| cÖwZwU cÖ‡kœi gvb 1|]

wb‡Pi Z‡_¨i Av‡jv‡K (১ I ২) bs cÖ‡kœi DËi `vI

(3k + 1)x2 + (11 + k)x + 9 = 0 GKwU wØNvZ mgxKiY,

†hLv‡b k GKwU aªeK|

১. GKwU g~j 1 n‡j k Gi gvb KZ?

A ক) – 21

4 খ) –21 গ) 21

4 ঘ)21

২. g~jØq mgvb n‡j k Gi GKwU gvb KZ?

A ক)–86 খ)–85 গ)85 ঘ)86

৩. x2 − 7x + 12 = 0 mgxKi‡Yi g~jØq  I  n‡j  +

 I  g~jwewkó mgxKiY †KvbwU?

A ক) x2 − 19x + 84 = 0 খ) x2 + 14x − 144 = 0 গ) x2 − 14x + 144 = 0 ঘ) x2 + 19x − 84 = 0 ৪.

wP‡Îi ⎯

i. dvsk‡bi †Wv‡gb (− , ) ii.dvsk‡bi †iÄ





−  2 

2 e¨ewa‡Z Aew¯’Z iii.y GKwU wecixZ e„Ëxq dvskb

A wb‡Pi †KvbwU mwVK?

ক)i I ii খ)i I iii গ)ii I iii ঘ)i, ii I iii

৫. tan−1x + cot−1x = ?

A ক)0 খ)

4 গ)

3 ঘ)

2

৬. ntan1x = tan1nx − xn

1 − nx2 n‡j n Gi gvb †KvbwU?

A ক)1 খ)2 গ)3 ঘ)4

৭. tanx + tan2x + tan 3x = 0 mgxKi‡Yi mgvavb bq

†KvbwU?

C ক)0 খ)

4 গ)

3 ঘ)2

3

wb‡Pi Z‡_¨i Av‡jv‡K (৮ I ৯) bs cÖ‡kœi DËi `vI :

৮. AB Gi mgxKiY †KvbwU?

ক)x + y = 2 2 খ)x − y = 2 2 গ)x + y

= 4 ঘ)x − y = 4

৯. OAP Gi †ÿÎdj KZ eM© GKK?

ক)4 2 খ)4 গ)2 2 ঘ)2

1০. d

dx (3sin– 1x) = KZ?

ক)3sin– 1x

1 – x2 খ)3sin– 1x.ln3

1 – x2 গ)3sin–

1x.ln3 ঘ) ln3 1 – x2

O X

2 B

O A

45

P

bgybv cÖkœ-3

(6)

Page 6 of 8 ১1. lim

y→0 1 − e

ln (1 + y) = ? [0 < y < 1]

ক)0 খ)1 গ)2 ঘ)

wb‡Pi Z‡_¨i Av‡jv‡K (১2-১৪) bs cÖ‡kœi DËi `vI:

x2 − 4x + y2 = 140 GKwU e„‡Ëi mgxKiY|

১2. e„‡Ëi e¨vmva© KZ?

ক)2 খ)8 গ)10 ঘ)12

১৩. (15, 0) we›`y †_‡K cÖ`Ë e„‡Ë ¯úk©‡Ki ˆ`N©¨ KZ?

ক)5 খ)10 গ)12 ঘ)13

১৪. cÖ`Ë mgxKiYwUi †ÿ‡ÎÑ

i. e„‡Ëi e¨vm 12 ii. e„ËwUi †K›`ª x-A‡ÿi Dci Aew¯’Z iii. e„ËwU (2, 12) we›`yMvgx

wb‡Pi †KvbwU mwVK?

ক)i I ii খ)i I iii গ)ii I iii ঘ)i, ii I iii

১৫. †Kv‡bv mgxKi‡Yi GKwU g~j 1 − i 2 n‡j mgxKiYwU n‡eÑ

ক) x2 − 2x + 3 = 0 খ)x2

+ 2x + 3 = 0

গ) x2 − 3x + 2 = 0 ঘ)x2 + 3x + 2 = 0

১৬. †Kv‡bv we›`yi Kv‡Z©mxq ¯’vbv¼ (− 1, 3) n‡j we›`ywUi

†cvjvi ¯’vbv¼ KZ n‡e?

B ক)

 2 

3 খ)

 2 2

3 গ)

 2 − 

3 ঘ)

 4 2

3

১৭. (2, −3) †K›`ªwewkó e„ËwU x Aÿ‡K ¯úk© Ki‡j Zvi mgxKiY wb‡Pi †KvbwU?

A ক)(x − 2)2 + (y − 3)2 = 32 খ) (x + 2)2 + (y + 3)2 = 2 গ) (x + 2)2 + (y − 3)2 = 22

ঘ) (x − 2)2 + (y + 3)2 = 32

১৮. A (1, −2) I B(−8, 1) we›`y؇qi ms‡hvRK †iLvsk BA

†K 2:1 Abycv‡Z AšÍwe©f³Kvix we›`yi ¯’vbv¼ wb‡Pi †KvbwU?

A ক) (−5, −1) খ) (−2, −1) গ)

(−2, 0) ঘ) (−5, 0)

1৯. 6x − 8y + 6 = 0 †iLvi Dci j¤^ Ges g~jwe›`y n‡Z 2 GKK `~‡i Aew¯’Z mij‡iLvi mgxKiYÑ

A ক)3x − 4y  10 = 0 খ)4x + 3y  10 = 0 গ) 3x + 4y  10 = 0

ঘ)4x − 3y  10 = 0

২০. 2x − 7y = 3 Ges 7x − 2y = 5 †iLv `yBwUi AšÍM©Z ¯’~j

†Kv‡Yi mgwØLЇKi mgxKiYÑ A ক)5x + 5y + 2 = 0

খ)9x − 9y + 8 = 0 গ) 9x − 9y − 8 = 0

ঘ)5x + 5y − 2 = 0

DÏxc‡Ki Av‡jv‡K 2১ I 2২ bs cÖ‡kœi DËi `vI : 25x2 − 16y2 + 400 = 0 GKwU Awae„‡Ëi mgxKiY|

2১. Awae„‡Ëi kxl©we›`y؇qi ¯’vbv¼ †KvbwU?

ক) ( 2, 0) খ) (0,  2)

গ) (0,  5) ঘ) ( 5,

0)

2২. Awae„ËwUi Dc‡Kw›`ªK j‡¤^i ˆ`N©¨ KZ?

ক) 8

5 খ)5

8 গ)25

2 ঘ)32

5 2৩. (x − 1)2

9 + y2

16 = 1 Dce„‡ËiÑ i. †K‡›`ªi ¯’vbv¼ (1, 0) ii. Dc‡K‡›`ªi ¯’vbv¼ (0,  7) iii. e„nr A‡ÿi ˆ`N©¨ 8

wb‡Pi †KvbwU mwVK?

ক) i I ii খ)ii I iii গ)i I iii ঘ)i, ii I iii

2৪. x2 + xy + y2 = 1 n‡j, dy dx = ? ক) – 2x

y + 2x খ)– (2x + y)

2y + x গ) – 2x

2y + x ঘ) – x y + 2x 2৫. d

dx

(

tan ex2

)

= KZ?

A ক)− x ex2 sec2ex2

tan ex2 খ)xex2sec2ex2 2 tanex2 গ)ex2sec2ex2

tanex2 ঘ)xex2sec2ex2 tanex2

(7)

Page 7 of 8

weGGd kvnxb K‡jR XvKv D”PZi MwYZ eûwbe©vPwb Afxÿv

mgq-25 wgwbU gvb-25 welq †KvW: 2 6 5

1. 5x − 5 3y + 2 = 0 Gi 3 3x + 3y − 4 = 0 mij‡iLv؇qi ga¨eZ©x †KvY KZ?

30 45 60 90

2. GKwU সামান্তরিকেি kxl© we›`y¸‡jv h_vµ‡g (1, 1), (4, 4), (4, 8) Ges (1, 5) n‡j Gi GKwU K‡Y©i ˆ`N©¨ wb‡Pi †KvbwU?

3 2 4 10 8

3. d

dx (5x) = KZ?

A x5x−1 5x ln5x 5x ln5 x ln5x

4. 2x2 + 2y2 − 4x − 7y + 1 = 0 e„ËwUi e¨vmva© KZ?

57 4

73

4 61 4 69

4

wb‡Pi Z‡_¨i Av‡jv‡K (5 I 6) bs cÖ‡kœi DËi `vI :

(1, 3) we›`y n‡Z x 3 − y + 8 = 0 mij‡iLvi Dci Aw¼Z j¤^‡iLvi `~iZ¡ P Ges j¤^‡iLvwU x-A‡ÿi mv‡_  †KvY Drcbœ K‡i|

5. P Gi gvb KZ?

2 4 10 20

6.  Gi gvb KZ?

30 60

120 150

7. x Gi †Kvb gv‡bi Rb¨ (x) = 1 3 x3 − 5

2 x2 + 6x − 1 Gi Pig gvb cvIqv hvq?

A 2, 3 −2, 3

2, −3 −2, −3

8. c Gi gvb KZ n‡j x2 + y2 − 8x + 6y + c = 0 e„ËwU y Aÿ‡K ¯úk© K‡i?

A 4 9

2 18

9. x2 + y2 − 6x − 16 = 0 e„ËwUiÑ i. e¨vmva© 5 GKK

ii. †K›`ª x A‡ÿi Dci Aew¯’Z

iii.(0,2) we›`y‡Z ¯úk©‡Ki mgxKiY 3x − 2y + 16 = 0 wb‡Pi †KvbwU mwVK?

i I ii i I iii ii I iii i, ii I iii

10. lim

x→0 (1 + 5x) 3x + 2

x Gi gvb KZ?

1 

e10 6

11. x2 + y2 = 81 e„‡Ëi GKwU R¨v (− 2, 3) we›`y‡Z সমরিখরিত n‡j R¨v-wUi mgxKiY †KvbwU?

2x − 3y + 13 = 0 2x + 3y − 13 = 0 2x + 3y − 6 = 0 3x + 2y − 13 = 0

12. 2x3 − 3x − 5 = 0 mgxKi‡Yi g~jÎq , ,  n‡j, 

Gi gvb KZ?

−3

2 0 3

2 5 2

13. wb‡Pi †KvbwU y2 = 8x cive„‡Ëi ¯úk©K?

y = x + 2 y = x + 1 y = x − 1 y = x − 2 14. cos tan−1 cot sin−1x Gi gvb KZ?

− x 

2 − x x − 

2 x

15. 2 + i 3 g~jwewkó mgxKiYwU n‡eÑ

x2 + 4x – 7 = 0 x2 – 4x + 7 = 0 x2 – 3x + 2 = 0 x2 + 3x – 2 = 0 16. sin−1x + cos−1y = 

2 n‡jÑ i. x = y = 1

2 ii. x2 + y2 = 1

iii. x 1 − y2 + y 1 − x2 = 1 wb‡Pi †KvbwU mwVK?

i I ii ii I iii i I iii i, ii I iii

17. x2 − 3y2 − 2x = 8 Awae„‡Ëi Dc‡Kw›`ªK j‡¤^i ˆ`N©¨ KZ?

−2 0

18. sin−1 (− cos x) + sin−1 (cos 3x) = KZ?

− 2x − 3x

+ 2x 3x

bgybv cÖkœ-4

(8)

Page 8 of 8 19. †Kv‡bv Dce„‡Ëi Dc‡Kw›`ªK j¤^ Dce„ËwUi e„n`v‡ÿi A‡a©K n‡j

Dr‡Kw›`ªKZv KZ?

1 2

1 2

2 2

20. sin

 2sin– 11

2 = ? 1

4

3 4 3

2

5 2

4x2 − 8(p − 2)x + 1 = 0 wØNvZ mgxKi‡Yi Av‡jv‡K (21 I 22) bs cÖ‡kœi DËi `vI:

21. DÏxc‡Ki mgxKi‡Yi g~jØq বাস্তব Ges mgvb n‡j, p Gi GKwU gvbÑ

2 5

2 3 4

3

5 2

22. DÏxc‡Ki mgxKi‡Yi g~jØq Ag~j` I Amgvb n‡j p Gi gvb wb‡Pi †KvbwU?

2 7

4 9

4 3

23. x2 a2 + y2

b2 = 1 KwYKwUÑ i. Awae„Ë n‡e hLb a2 = b2 ii. Dce„Ë n‡e, hLb a  b iii. e„Ë n‡e hLb a = b wb‡Pi †KvbwU mwVK?

i I ii i I iii i, ii I iii ii I iii 24. d

dx {sin−1 (cos x)} = ?

−1 x 1

x 1

25. 4sin−1x + cos−1x =  n‡j, x Gi gvb wb‡Pi †KvbwU?

0 1

2 3

2 1

Referensi

Dokumen terkait

In this paper, the writer interviewed English teacher and the students. Based on the interview with the English teacher Mrs. R, the writer concluded that teacher had some

YAYASAN AKRAB PEKANBARU Jurnal AKRAB JUARA Volume 7 Nomor 3 Edisi Agustus 2022 283-302 THE PRAXIS OF SOCRATIC QUESTIONING METHOD AND CRITICAL THINKING SKILLS IN LEARNING ENGLISH FOR