• Tidak ada hasil yang ditemukan

Special sq matrices

N/A
N/A
Protected

Academic year: 2023

Membagikan "Special sq matrices"

Copied!
11
0
0

Teks penuh

(1)

Special sq matrices

Matrix-3

(2)

Symmetric matrix

Skew-symmetric matrix

Splitting up a sq matrix

Special sq matrices

2

Md Salek Parvez : Astt Prof. : GED : FSIT : DIU

The part for further study may be omitted first time.

(3)

Md Salek Parvez : Astt Prof. : GED : FSIT : DIU 3

Symmetric matrix

M is symmetric if

M = MT .

tr (sym matrix) = any number

Example :

Tr(M) = 6

1 2 8 2 2 4 8 4 3 M

  

 

   

 

 

(4)

4

Skew-Symmetric matrix

M is skew-symmetric if

M = - MT .

tr ( skew-sym matrix) = 0

Example :

4 Md Salek Parvez : Astt Prof. : GED : FSIT : DIU

0 2 8 2 0 4 8 4 0 M

  

 

  

   

 

(5)

Symmetric matrix-1

Construction :

❶ write the diagonal with any entries ;

❷ complete 1st row with any entries ;

❸ complete 1st column with those entries used in ❷ ;

❹ complete 2nd row with any entries ;

❺ complete 2nd column with those entries used in ❹ ;

❻ complete other rows & columns using the same process.

For further study: Page- 21

5 Md Salek Parvez : Astt Prof. : GED : FSIT : DIU

 A 4×4 example:

 

 

 

 

2 / 5 4

1 7

4 0

2 6

1 2

3 5

7 6

5

2

(6)

Md Salek Parvez : Astt Prof. : GED : FSIT : DIU

6

Skew-symmetric matrix-1

Construction :

❶ write the diagonal with any entries ;

❷ complete the 1st row with any entries ;

❸ complete the 1st column with -ve entries of ❷ ;

❹ complete the 2nd row with any entries ;

❺ complete the 2nd column with -ve entries of ❹ ;

❻ complete other rows & columns using the same process.

For further study: Page- 21

 A 4x4 example:

0 2 6 9

2 0 3 7 6 3 0 0 9 7 0 0 M

 

 

 

 

    

  

 

(7)

Relation with square matrices

Gist of Theorem 2.7 : Gist of Theorem 2.7 :

For Further study:

 Theorem 2.6

 Theorem 2.7

 Page 21-23 For Further study:

 Theorem 2.6

 Theorem 2.7

 Page 21-23

Md Salek Parvez : Astt Prof. : GED : FSIT

: DIU 7

Square matrix

Symmetr ic

Skew- symmetri

c

(8)

How to apply theorem 2.7

For symmetric part For skew-symmetric part

 Write M

T

.

 Find M + M

T

.

 Calculate ½ ( M + M

T

).

 Write

M

T

.

 Find

M - M

T

.

 Calculate ½(

M - M

T ).

Md Salek Parvez : Astt Prof. : GED : FSIT : DIU8

Now M = sym +

skew

(9)

Q.

Express M =

as the sum of a symmetric matrix & a skew-symmetric matrix.

symmetric part skew-symmetric part

   

Md Salek Parvez : Astt Prof. : GED : FSIT : DIU 9

Now M = +

 

Solution: Given Solution: Given  





8 0

5 3 / 1

(10)

Practice Perfection ⇢

Md Salek Parvez : Astt Prof. : GED : FSIT : DIU

10

Q-1. Write as the sum of a symm& a skew sym matrix where :

❶; ❷; ❸  

Q-2. Give 3 examples of symmetric matrices: (i). 4x4 ; (ii). 5x5 ; (iii). 6x6

Q-2. Give 3 examples of symmetric matrices: (i). 4x4 ; (ii). 5x5 ; (iii). 6x6

1.Which matrices can be expressed as the sum of a symmetric &

skew-symmetric matrix?

2. What is the trace of a 29 29 matrix : (i) skew-symmetric matrix ; (ii) symmetric .

3. Give an example of 7x7 matrix which is both: symmetric and skew-symmetric matrix.

4. A 99×99 skew-symmetric matrix was found to have the trace

“0”: True or, False?

Q-3. Give 3 examples of skew- symmetric matrices: (i). 4x4 ; (ii). 5x5 ; (iii). 6x6

Q-3. Give 3 examples of skew- symmetric matrices: (i). 4x4 ; (ii). 5x5 ; (iii). 6x6

For further study (if you want to be an expert): Book Problems:

P- 79: 64-71

(11)

Md Salek Parvez : Astt Prof. : GED : FSIT : DIU

11

Go to Go to

Next class

Next class To study Matrix-4 To study

Matrix-4

Referensi

Dokumen terkait

International Review on Modelling and Simulations IREMOS Contents continued from Part A Predictive DTC-ISVM for Doubly-Fed Induction Machine System Fed by Indirect Matrix

THE ANNALS OF DENTISTRY University of Malaya THE ANNALS OF DENTISTRY University of Malaya HEADER University of Malaya Dental Students’ Perception on Competency Based Test Arbi