• Tidak ada hasil yang ditemukan

Proses pembuatan tapioka skala pilot dari varietas Singkong Manggu dan Singkong Karet serta aplikasinya terhadap kerenyahan produk Pilus

N/A
N/A
Protected

Academic year: 2017

Membagikan "Proses pembuatan tapioka skala pilot dari varietas Singkong Manggu dan Singkong Karet serta aplikasinya terhadap kerenyahan produk Pilus"

Copied!
45
0
0

Teks penuh

(1)

PROSES PEMBUATAN TAPIOKA SKALA PILOT DARI

VARIETAS SINGKONG MANGGU DAN SINGKONG KARET

SERTA APLIKASINYA TERHADAP KERENYAHAN

PRODUK PILUS

AGISIO ALYA SUKMA

ILMU DAN TEKNOLOGI PANGAN FAKULTAS TEKNOLOGI PERTANIAN

INSTITUT PERTANIAN BOGOR BOGOR

(2)
(3)

PERNYATAAN MENGENAI SKRIPSI DAN

SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA*

Dengan ini saya menyatakan bahwa skripsi berjudul “Proses Pembuatan Tapioka Skala Pilot dari Varietas Singkong Manggu dan Singkong Karet serta Aplikasinya Terhadap Kerenyahan Produk Pilus” adalah benar karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor

Bogor, September 2014

Agisio Alya Sukma

(4)

ABSTRAK

AGISIO ALYA SUKMA. Proses Pembuatan Tapioka Skala Pilot dari Varietas Singkong Manggu dan Singkong Karet serta Aplikasinya Terhadap Kerenyahan Produk Pilus. Dibimbing oleh FERI KUSNANDAR dan ROSITA

Kualitas produk akhir menjadi sangat penting untuk diperhatikan bagi industri pangan. Hal ini erat kaitannya dengan kualitas bahan baku yang digunakan. Salah satu aspek terkait dengan kualitas produk akhir adalah karakteristik tekstur produk pangan yang dihasilkan. Tekstur memiliki peranan dalam penerimaan konsumen terhadap suatu produk pangan. Pilus makanan ringan berbentuk bulat yang terbuat dari tapioka. Dengan pengendalian parameter proses pembuatan tapioka dan juga pengaruh perbedaan varietas singkong manggu dan singkong karet dalam pembuatan tapioka terhadap karakteristik tekstur pilus yang diinginkan. Pengambilan data berdasarkan parameter kritis diantaranya kadar pati, profil pasting pati, kadar amilosa amilopektin dan nilai

swelling power serta uji produk akhir pilus dengan Texture Analyzer dan

organoleptik. Hasil penelitian menunjukkan parameter yang paling berpengaruh terhadap kerenyahan pilus adalah rasio amilosa amilopektin yang rendah. Serta diperoleh data bahwa perbedaan varietas singkong tidak berpengaruh terhadap pembuatan tapioka. Namun perbedaan varietas berpengaruh terhadap kerenyahan produk pilus.

Kata kunci: tapioka, singkong, pati, amilosa, pilus

ABSTRACT

AGISIO ALYA SUKMA. Process of Making Tapioca on Pilot Scale from Varieties of Manggu Cassava and Karet Cassava and Applicated to Crispiness of Pilus

The quality of the final product becomes very important to attention for the food industry. It is closely related to the quality of the raw materials who used. One of the aspects linked to the quality of the end product is the texture characteristic of final food products. Textures have function in consumer acceptance of a food product. Pilus spherical-shaped snack made from tapioca. With control the process parameters of making tapioca and influence of cassava varieties difference such as manggu cassava and karet cassava in making tapioca flour to the desired texture characteristic of pilus. Take data based on critical parameter such as starch content, profile of starch gelatinization, amylose and amylopectin content , swelling power value and final product with Texture Analyzer as hardness and organoleptic. This research refer to parameter who most influence to crispiness is low rasio amylose-amilopectin. And it is get data that difference of cassava varieties not influence in process of making cassava flour. But difference of varieties cassava influence to crispiness of pilus.

(5)

Skripsi

sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknologi Pertanian

pada

Departemen Ilmu dan Teknologi Pangan

PROSES PEMBUATAN TAPIOKA SKALA PILOT DARI

VARIETAS SINGKONG MANGGU DAN SINGKONG KARET

SERTA APLIKASINYA TERHADAP KERENYAHAN

PRODUK PILUS

AGISIO ALYA SUKMA

ILMU DAN TEKNOLOGI PANGAN FAKULTAS TEKNOLOGI PERTANIAN

INSTITUT PERTANIAN BOGOR BOGOR

(6)
(7)
(8)

PRAKATA

Puji dan syukur penulis panjatkan kepada Allah subhanahu wa ta’ala atas segala karunia-Nya sehingga skripsi yang berjudul Proses Pembuatan Tapioka Skala Pilot dari Varietas Singkong Manggu dan Singkong Karet Terhadap serta Aplikasinya Kerenyahan Produk Pilus ini berhasil diiselesaikan. Skripsi ini dibuat setelah melakukan penelitian pada bulan Maret-Juli di Technopark IPB, Laboratorium GarudaFood Putra Putri Jaya dan Laboratorium Ilmu dan Teknologi Pangan

Penulis mengucapkan terima kasih penulis ucapkan kepada :

1. Bapak Dr Ir Feri Kusnadar M.Sc selaku pembimbing yang telah memberikan saran, kritik dan dorongan selama saya kuliah di ITP. 2. Ibu Wati STP, Ibu Rosita STP M.Sc selaku pembimbing lapang yang

telah banyak memberi saran, kesabaran.

3. Ibu Elvira Syamsir STP M.Sc selaku penguji yang telah memberikan saran serta kritik selama sidang.

4. Papah Atang Supendi, mamah Ani Kusmiati, adik Aeska Alya Sukma dan Ashara Alya Sukma , serta seluruh keluarga, atas segala doa dan kasih sayangnya.

5. Staff technopark Pak Jaenal, Mang Sadat, dan Mang Ujang yang sudah membantu selama penelitian ini.

6. Staff RnD Garudafood Mas Danur, Mbak Nita, Mbak Uti dan staff yang lain yang selama penelitian sudah membantu.

7. Teman-teman se-magang Andino, Muti, Agit yang seperjuang selama berbulan-bualn selama magang.

8. Sahabat-sahabat Diki, Jae, Lingga, Arief Munandar, Bachtiar 9. Temen sebimbingan Vega, Tomy, dan temen-temen ITP 47 lainnya. Semoga karya ilmiah ini bermanfaat.

Bogor, September 2014

(9)

DAFTAR ISI

DAFTAR TABEL viii

DAFTAR GAMBAR viii

DAFTAR LAMPIRAN viii

PENDAHULUAN 1

Latar Belakang 1

Perumusan Masalah 1

Tujuan Penelitian 1

Manfaat Penelitian 2

TINJAUAN PUSTAKA 2

Pati 2

Singkong 2

Proses Pembuatan Tapioka 3

Pilus 4

METODE 4

Waktu dan Tempat Penelitian 4

Bahan 4

Alat 5

Tahapan Penelitian 5

Prosedur Analisis Data 9

HASIL DAN PEMBAHASAN 11

Hasil 11

SIMPULAN DAN SARAN 18

Simpulan 18

Saran 19

DAFTAR PUSTAKA 19

LAMPIRAN 21

(10)

DAFTAR TABEL

1. Penurunan HCN pada singkong 3

2. Bahan baku utama 12

3. Diagram modifikasi proses pembuatan tapioka 13

4. Pembuatan Tapioka 14

5. Data tekstur dan sensori kerenyahan produk pilus 17 6. Parameter pendugaan korelasi terhadap kerenyahan pilus 18

DAFTAR GAMBAR

1. Diagram alir pembuatan tapioka (Setyono et al. 1991) 6

2. Diagram alir pembuatan tapioka 7

3. Diagram alir pembuatan pilus 8

4. Kadar Pati, Amilosa, Amilopektin 14

5. Swelling Power 15

6. Kurva profil pasting tapioka 16

DAFTAR LAMPIRAN

1. Foto proses pembuatan tapioka 21

2. Trail pembuatan tapioka 24

3. Tabel pati 24

4. Kurva standar amilosa 24

5. Kadar amilosa 25

6. Swelling Power 25

7. Tabel Data tekstur 26

8. Tabel sensori intensitas kerenyahan 27

9. Tabel sensori hedonik 28

10. Hasil analisis ANOVA kadar pati 30

11. Hasil analisis ANOVA kadar amilosa 30

12. Hasil analisis ANOVA kadar amilopektin 31

13. Hasil analisis ANOVA swelling power 31

14. Hasil analisis ANOVA tekstur pilus 32

15. Hasil analisis ANOVA sensori intensitas kerenyahan 32 16. Hasil analisis ANOVA sensori kesukaan pilus 33 17. Hasil analisis ANOVA viskositas puncak 33

(11)

PENDAHULUAN

Latar Belakang

Dewasa ini permintaan akan makanan olahan tinggi, hal tersebut mendorong berkembangnya inovasi. Industri pangan berlomba untuk memenuhi permintaan tersebut, maka terjadi persaingan antar industri pangan. Sekarang ini makanan olahan yang digemari masyarakat yaitu produk snack, salah satunya pilus.

Makanan olahan ini digemari karena bisa menjadi teman makan. Produsen yang mengembangkan produk makanan olahan ini adalah PT GarudaFood.

Pilus adalah makanan ringan berbentuk bulat yang terbuat dari tepung singkong/tapioka dengan campuran bahan atau pati lain dan bumbu rempah yang diproses dengan atau tanpa menggunakan ekstrusi kemudian dipotong menjadi ukuran kecil dan digoreng (Direktorat Standardisasi Produk Pangan, 2006).

Tapioka yang digunakan selama ini masih beragam dan dapat berubah bergantung dari ketersediaan tepung yang ada. Hal itu mengakibatkan tekstur pilus yang dihasilkan tidak konsisten. Karakter pilus yang diharapkan memiliki tekstur renyah dan berpori rapat.

Sifat fisikokimia tapioka bisa dipengaruhi oleh umur panen singkong, varietas singkong, dan faktor lingkungan. Perlu dilakukan penelitian lebih lanjut untuk mengetahui paramater yang paling berpengaruh terhadap kerenyahan produk akhir pilus

Perumusan Masalah

PT Garudafood membutuhkan tapioka yang konsisten untuk memperoleh produk pilus yang renyah dan berpori rapat. Tapioka yang digunakan masih beragam dan dapat berubah bergantung dari ketersediaan tepung yang ada. Keberagaman tapioka yang ada bisa terjadi karena proses pembuatan tapioka tidak sama. Untuk itu perlu dipelajari parameter proses pembuatan tapioka

Berdasarkan penelitan sebelumnya tapioka yang dihasilkan dengan pengeringan cabinet suhu 40-60oC memiliki karakter viskositas puncak yang paling rendah diantara perlakuan yang lain dan pilus yang dihasilkan memiliki kerenyahan yang paling tinggi (Kusumawardhani 2013). Data tersebut digunakan sebagai dasar proses pembuatan tapioka dengan skala yang lebih besar. Selain itu dipelajari pengaruh varietas singkong manggu dan varietas singkong karet terhadap karakter tepung dan kerenyahan pilus. Selain itu ditambahkan parameter analisis kadar pati, amilosa, amilopektin, swelling power, dan profil pasting pati

serta parameter fisik mengukur kerenyahan pilus secara objektif dengan Texture Analyzer dan secara subjektif dengan oragnoleptik. Penelitian ini dilakukan dua

kali pengulangan untuk pembuatan tapioka untuk masing-masing varietas untuk singkong manggu maupun singkong karet.

Tujuan Penelitian

(12)

2

pangan, dan memberikan pengalaman lapang dalam penerapan ilmu dan teknologi pangan di industri dalam upaya penyelesaian tugas akhir sebagai syarat kelulusan.

Sedangkan tujuan khususnya adalah mengkaji ulang parameter proses pembuatan tapioka. Mengendalikan parameter prosesnya. Mempelajari pengaruh varietas singkong manggu dan singkong karet terhadap karakter tapioka. Mempelajari karakter tapioka yang berpengaruh terhadap kerenyahan pilus

Manfaat Penelitian

Memperoleh alur proses pembuatan tapioka dengan karakter yang diharapkan. Memperoleh cara pengendalian parameter proses pembuatan tapioka. Memperoleh varietas singkong yang berpengaruh terhadap karakter tapioka. Memperoleh tapioka yang berpengaruh terhadap kerenyahan pilus.

TINJAUAN PUSTAKA

Pati

Pati termasuk pada bagian dari karbohidrat. Karena sifat fungsional dari pati dapat berperan sebagai pengental, penstabil, pembentuk gel dan pembentuk lapisan film. Sumber pati bisa berasal dari seperti serealia, umbi-umbian, kacang-kacangan, biji-bijian maupun buah-buahan. Pati berbentuk granula berwarna putih, tidak berbau dan berasa. Granula pati dibagi dua bagian, daerah pertama yaitu daerah kristalin yang terdiri berdasarkan fraksi amilopektin, sedangkan bagian lainnya yaitu daerah amorf terdapat fraksi dari amilosa (Kusnandar 2010)

Amilosa adalah polimer linier dari α-D-glukosa yang terhubung satu sama lain melalui ikatan glikosidik α(1-4). Amilopektin juga merupakan polimer dari α-D-glukosa yang memiliki struktur percabangan, dimana terdapat 2 jenis ikatan glikosidik, yaitu ikatan glikosidik α(1-4) dan α(1-6). Ikatan glikosidik α(1-4) membentuk struktur linear, sedangkan ikatan glikosidik α(1-6) membentuk percabangan (Kusnandar 2010)

Sifat–sifat fisikokimia pati diantaranya amilosa, amilopektin, viskositas gelatinisasi, Swelling power (Murillo dkk., 2008). Hal-hal tersebut harus

diperhatikan.

Singkong

Singkong atau ubikayu (Manihot utilisima Crantz) merupakan salah satu

sumber karbohidrat lokal Indonesia yang menduduki urutan ketiga terbesar setelah padi dan jagung. Tanaman ini merupakan bahan baku yang paling potensial untuk diolah menjadi tepung.

(13)

3 senyawa glokosida sianogenik dan bila terjadi proses oksidasi oleh enzim linamarase maka akan dihasilkan glukosa dan asam sianida (HCN) yang ditandai dengan bercak warna biru, akan menjadi toxin (racun) bila dikonsumsi pada kadar HCN lebih dari 50 ppm. (Departemen Pertanian 2011)

Berdasarkan kadar amilosa, ubikayu dibagi menjadi 2 kelompok, yaitu singkong gembur (kadar amilosa lebih dari 20%) yang ditandai secara fisik bila kulit ari yang berwarna coklat terkelupas dan kulit tebalnya mudah dikupas, dan singkong kenyal (kadar amilosa kurang dari 20%) yang ditandai bila kulit ari warna coklat tidak terkelupas (lengket pada kulit tebalnya) dan kulit tebalnya sulit dikupas (Departemen Pertanian 2011)

Karakteristik singkong umumnya berdasarkan rasa manis atau pahit yang dapat dihubungkan dengan kandungan HCN (Bokanga 2001). Pengelompokan singkong berdasarkan kadar HCN menjadi 4 kelompok, yaitu (1) singkong manis bila kadar HCN 40 ppm (manis), seperti varietas Adira I, gading, mangi, betawi, mentega, randu ranting dan kaliki (2) singkong agak beracun bila kadar HCN 50 – 80 ppm (3) singkong beracun kadar HCN 80-100 ppm (4) singkong sangat beracun mengandung kadar HCN lebih dari 100 ppm seperti varietas Bogor, SPP dan Adira II. (Departemen pertanian 2011).

Singkong manggu termasuk kelompok singkong manis, singkong manggu ini merupakan salah satu varietas singkong unggulan yang sering digunakan untuk olahan seperti keripik maupun tapioka. Sementara itu singkong karet termasuk kadar HCN tinggi dimana biasa digunakan industri untuk membuat tapioka maupun biodiesel. Namun kadar HCN yang tinggi pada singkong karet harus dikurangi hingga batas bisa dikonsumsi. Cara penurunan kadar HCN dengan pencacahan dan pemanasan 37-400C selama 7 jam. Namun dengan pengeringan 3 jam saja cukup untuk singkong karet aman dikonsumsi dengan kadar HCN 33 ppm seperti dikutip di Tabel 1.

Tabel 1 Penurunan HCN pada singkong

Waktu (jam) Kandungan HCN dalam umbi singkong karet (ppm)

0 289

(14)

4

airnya dibuang. Gumpalan pati diremahkan dengan alat molen sehingga bentuknya butiran kasar, selanjutnya dikeringkan dan digiling, serta diayak dengan ukuran 80 mesh. Ampas hasil pengolahan pati tersebut dapat digunakan untuk makanan ternak (Setyono et al. 1991 dalam jurnal departemen pertanian

2011). Menurut Suprapti (2005) rendemen tapioka yang didapat 25% namun jarang sekali industri mencapainya. Biasanya hanya berkisar antara 10-15%.

Proses pemarutan menggunakan crusher, lalu untuk ekstraksi dan

pemisahan pati secara sentrifugasi dengan alat Auto Brush Strainer dan Nozzle separator dimana berjalan secara kontinyu. Cara kerja Auto Brush Strainer ini

untuk ekstraksi dan juga sebagai perlakuan awal sebelum ke Nozzle Separator,

sedangkan Nozzle Separator bekerja seperti separator yang lainnya, pemisahan

secara kontinyu ari campuran minyak/air/lumpur, memulihkan kembali lemak wol dari air limbah wol, mengembalikan minyak dari jus sawit.

Prinsip pemisahan sentrifugasi didasarkan pada perbedaan berat jenis dari komponen-komponen yang ada. Cairan tak larut (fase terdispersi) dalam fase cair kontinyu akan terendap hingga kecepatan konstan akhir tercapai. Umumnya, sentrifugasi digunakan untuk memisahkan komponen tak larut (insoluble) dari

media cair (Ford dan Graham, 1991; Ruthven 1997).

Menurut Brooker et al. (1973), pengeringan adalah proses pindah panas

dari udara pengering ke bahan dan penguapan kandungan air dari bahan ke udara pengering secara simultan. Pengering kabinet (cabinet dryer) terdiri dari suatu

ruangan yang terisolasi dengan baik untuk mencegah kehilangan panas. Pengeringan akan memakan waktu 5-10 jam atau kurang tergantung dari jenis bahan dan tingkat kadar air yang diinginkan (De Leon 1988).

Pilus

Pilus merupakan salah satu jenis snack tradisional. Pilus banyak ditemui di

daerah Jawa Tengah, khususnya di daerah Brebes, Tegal, Pekalongan, Purwokerto, dan Kebumen. Pilus adalah makanan ringan berbentuk bulat yang terbuat dari tepung singkong/tapioka dengan campuran bahan atau pati lain dan bumbu rempah yang diproses dengan atau tanpa menggunakan ekstrusi kemudian dipotong menjadi ukuran kecil dan digoreng (Direktorat Standardisasi Produk Pangan 2006).

METODE

Waktu dan Tempat Penelitian

Penelitian ini dilakukan pada bulan Maret-Juli 2014 di PT Garudafood Putra Putri Jaya, Technopark IPB dan Laboratorium Ilmu dan Teknologi Pangan IPB

Bahan

(15)

5

Alat-alat yang digunakan terdiri dari Crusher, Raw Starch Milk Tank,Auto Brush Strainer, Nozzle Separator, Cabinet Dryer, Pin Disc Mill, pipet, kondensor,

spektrofotometer, hot plate, Stable Micro System TAXT2 Texture Analyzer, serta

alat-alat gelas lainnya.

Tahapan Penelitian

Penelitian ini dibagi tiga tahapan yaitu proses pembuatan tapioka skala pilot seperti diagram alir pembuatan tapioka berdasarkan referensi, kemudian penyusaian diagram alir proses pembuatan tapioka dengan alat-alat di F-Technopark, pengadaan bahan baku, percobaan dan modifikasi proses pembuatan tapioka, dan rekomendasi diagram alir proses pembuatan tapioka skala pilot di TECHNOPARK. Tahapan kedua analisis kadar pati, amilosa-amilopektin,

swelling power, profil pasting pati. Serta tahapan aplikasi tapioka pada pilus

dengan analisis tekstur secara objektif dan subjektif. Analisis objektif dengan menggunakan Stable Micro System TAXT2 Texture Analyzer dan secara subjektif

dengan uji organoleptik rating intesitas dan kesukaan kerenyahan pilus.

Proses pembuatan tapioka dikutip (Gambar 1) dimulai dari Proses pembuatan tapioka diawali dengan singkong dicuci bersih, kemudian diparut sambil diberi air. Parutan tersebut dimasukkan dalam air dan disaring, serta diperas sampai patinya keluar semua. Air perasan kemudian diendapkan dan airnya dibuang. Gumpalan pati diremahkan dengan alat molen sehingga bentuknya butiran kasar, selanjutnya dikeringkan dan digiling, serta diayak dengan ukuran 80 mesh.

Proses pembuatan tapioka disesuaikan dengan ketersediaan alat-alat di F-Technopark (Gambar 2) singkong yang telah dikupas dan dibersihkan kemudian diparut dengan Crusher sambal ditambahkan air. Parutan singkong tersebut di

ekstraksi menggunakan Auto Brush Strainer, dari alat ini keluarannya ampas dan

air perasan tersebut yang langsung dialirkan ke Nozzle Separator yang berfungsi

sebagai pemisah pati dengan sistem sentrifugasi. Kemudian pati yang keluar dari

Nozzle Separator dikeringkan dengan Cabinet Dryer suhu 40-60oC

(Kusumawardhani 2013). Pati yang kering tersebut digiling dan diayak 80 mesh menggunakan alat Disc Mill. Ukuran mesh 80 diambil disesuaikan dengan grade

tapioka B (Radley 1976).

Tapioka dianalisis kadar pati, kadar amilosa-amilopektin, swelling power,

dan profil pasting pati. Kemudian tapioka diaplikasikan ke pilus (Gambar 3). Pembuatan pilus diawali pencampuran tapioka dengan modified starch, kemudian

(16)

6

Gambar 1 Diagram alir pembuatan tapioka (Setyono et al. 1991 dalam

Departemen Petanian 2011) Singkong

Pencucian

Air

Gumpalan pati Pengendapan

Parutan

Penyaringan dan pemerasan

Pati Pemarutan

Peremahan dengan alat molen

Pati butiran kasar

Pengeringan

Penggilingan dan pengayakan

(17)

7

Gambar 2 Diagram alir pembuatan tapioka

Ampas

Pati

Tapioka Singkong

Pengupasan dan Pembersihan

Pemarutan dengan Crusher

Air

Parutan

Ekstraksi dengan Auto Brush Strainer

Pemisahan dengan Nozzle

separator Air

Pengeringan dengan Cabinet dryer

(18)

8

Gambar 3 Diagram alir pembuatan pilus Modified

Starch Tapioka

Larutan

bumbu Pencampuran

Pengadonan sampai kalis

Adonan

Pembentukan silender

Pemotongan

Penggorengan

Penirisan

(19)

9

Prosedur Analisis Data

1. Analisis Tapioka

a. Pengukuran rendemen

Tapioka yang telah jadi kemudian akan dihitung nilai rendemennya dengan cara sebagai berikut

b.Analisis pasting dengan Rapid Visco Analyzer

Analisis pasting pati dilakukan dengan instrumen Rapid Visco Analyzer.

Sampel sebanyak 3 - 4 gram (kadar air diketahui) disuspensikan dalam 25 ml air destilata. Suspensi dipanaskan hingga suhu 50 oC dan dipertahankan selama 1 menit, kemudian dipanaskan lebih lanjut hingga mencapai suhu 95 oC dengan kecepatan pemanasan 6 oC/menit dan dipertahankan pada suhu tersebut selama 5 menit. Setelah itu dilakukan pendinginan hingga mencapai suhu 50 oC dengan kecepatan pendinginan 6 oC/menit dan dipertahankan suhu tersebut selama 5 menit.

Informasi yang dapat diperoleh dari kurva viskograf adalah parameter pasting pati, antara lain: viskositas maksimum (viskositas tertinggi selama proses pemanasan), suhu awal gelatinisasi, waktu untuk mencapai viskositas maksimum, viskositas terendah yang teramati setelah mencapai viskositas maksimum, viskositas akhir, dan viskositas setback. Seluruh nilai dilaporkan dalam menit, oC

atau centi Poise (cP).

c. Analisis kadar pati metode Luff Schoorl (SNI 01-2892-1992)

Pembuatan Larutan Luff Schrool. Sebanyak 71.9 g N2CO3 anhidrat dilarutkan dalam 300 mL akuades yang dipanaskan. Setelah larut, kemudian ditambahkan 25 g asam sitrat yang telah dilarutkan dengan 25 mL akuades sedikit demi sedikit. Kemudian di tambahkan 8 g CuSO4.5H2O dalam 100 mL akuades sedikit demi sedikit. Setelah semua bercampur, kemudian penangas diturunkan suhunya dan dibiarkan selama 30 menit, setelah itu larutan ditera sampai 500 mL dan dibiarkan selama satu malam didalam tempat gelap.

Analisis sampel. Sebanyak 1 gram sampel tepung dilarutkan dalam 40 mL

(20)

10

Luff Schrool dan 25 mL akuades (tanpa sampel). Kemudian direfluks selama 10 menit (dihitung pada saat mulai mendidih ), lalu didinginkan dalam boks es selama beberapa menit. Kemudian ditambahkan 25 mL H2SO4 25% dan 10 mL larutan KI 20%, dan segera dititrasi dengan larutan Na2S2O3 0.1N yang telah distandarisasi. Penambahan indikator kanji 0.5% di lakukan pada saat titrasi berlangsung, titrasi dilakukan pada saat larutan berubah warna dari ungu menjadi putih keruh. Kadar pati diukur dengan cara sebagai berikut:

G = mg glukosa dari tabel (Vol Na2S2O3 Blanko - Vol Na2S2O3 contoh) Fp = faktor pengenceran

W = bobot contoh (mg)

d.Analisis kadar amilosa (Apriyantono et al. 1989) dan amilopektin

Pembuatan Kurva Standar.Timbang 40 mg amilosa murni dan masukkan

ke dalam tabung reaksi, kemudian tambahkan 1 ml etanol 95% dan 9 ml NaOH 1N. Panaskan tabung reaksi tersebut di dalam air mendidih sekitar 10 menit sampai semua amilosa membentuk gel. Setelah didinginkan, pindahkan campuran secara kuantitatif ke dalam labu takar 100 ml. Tepatkan dengan air sampai tanda tera.

Pipet sebayak masing-masing 1, 2, 3, 4, dan 5 ml larutan tersebut ke dalam labu takar 100 ml, setelah itu tambahkan ke dalam labu takar asam asetat 1 N sebanyak 0.2, 0.4, 0.6, 0.8 dan 1 ml. Kemudian tambhakan 2 ml larutan iod masing-masing, tepatkan larutan tersebut sampai tanda tera dengan air. Setelah didiamkan 20 menit, ukur absorbansi dan intensitas warna biru yang terbentuk dengan spektrofotometer pada panjang gelombang 625 nm. Buat kurva stndar sebagai hubungan antara kadar amilosa (sumbu x) dengan absorbansi (sumbu y).

Analisis contoh. Tepung ditimbang 100 mg dan masukkan ke dalam

tabung reaksi, kemudian tambahkan 1 ml etanol 95% dan 9 ml NaOH 1N. Kemudian panaskan tabung reaksi selama 10 menit untuk menggelatinisasi pati. Setelah didinginkan, masukkan pasta pati ke dalam labu takar 100 ml dan tepatkan hingga tanda tera. Pipet sebanyak 5 ml larutan tersebut dan dimasukkan ke dalam labu takar 100ml, lalu tambahkan 1 ml asam asetat 1N, 2 ml larutan iod bdan air hingga tanda tera. Setelah didiamkan selam 20 menit, ukur absorbansinya dengan spektrofotometer pada 625 nm

C = konsentrasi amilosa contoh dari kurva standar (mg/ml) V = volume akhir contoh (ml)

FP = faktor pengenceran W = berat contoh (mg)

(21)

11

e. Analisis Swelling Power (Leach et al, 1959)

Analisa swelling power dengan melarutkan 0,1 gr pati dalam 10 ml

aquadest dan dipanaskan dalam water batch 60oC selama 30 menit dengan pengadukan kontinyu. Kemudian dicentrigufe dengan kecepatan 2500 rpm selama 15 menit, memisahkan pasta dari supernatantnya dan menimbang berat pastanya.

2. Tahap Analisis Produk Akhir Pilus

a. Analisis secara objektif dengan analisis tekstur

Secara objektif menggunakan Stable Micro System TAXT2 Texture Analyzer. Probe yang digunakan adalah compression. Kerenyahan ditentukan dari

maksimum gaya (nilai puncak) pada tekanan pertama tertinggi b. Analisis secara subjektif dengan uji organoleptik

Analisis sensori secara subjektif menggunakan uji Rating 30 orang panelis

umum. Parameter yang diuji adalah tekstur (kerenyahan). Analisis dengan ANOVA dan uji lanjut Duncan

HASIL DAN PEMBAHASAN

Hasil Pembuatan Tapioka

Pembuatan tapioka ini dilakukan dengan basis singkong segar sebanyak 40 kg. Singkong yang digunakan yaitu singkong manggu dan singkong karet. Masing-masing singkong memiliki umur panen yang berbeda-beda, singkong manggu 1 berumur panen 8 bulan yang dengan kedatangan 26 Maret 2014 dan singkong manggu 2 umur panen 9 bulan kedatangannya 2 April 2014. Untuk singkong manggu didapatkan di Desa Cikarawang (Belakang Kampus IPB). Sedangkan untul singkong karet berumur 11 dan 12 bulan yang berasal dari Bantar Kambing Bogor dengan kedatangan 20 Mei dan 3 Juni 2014. Setiap kedatangan singkong ini tidak ada masa tunggu, saat kedatangan langsung diproses menjadi tapioka. Dengan begitu kesegaran dari singkong tersebut bisa terjaga.

Skala Tekstur (kerenyahan) 1 Sangat tidak renyah 2 Tidak renyah

3 Netral

4 Renyah

(22)

12

manggu 1 8 26 Maret 2014 Desa Cikarawang (Belakang Kampus IPB) Singkong

manggu 2 9 2 April 2014 Desa Cikarawang (Belakang Kampus IPB) Singkong

karet 1 11 20 Mei 2014 Bantar Kambing Bogor Singkong

karet 2 12 3 Juni 2014 Bantar Kambing Bogor

Proses pembuatan dikutip di Tabel 3, dimulai dari pengupasan dan pembersihan singkong, singkong dibagi menjadi tiga bagian per masing-masing umbinya agar memudahkan saat akan diparut. Umbi singkong yang telah dikupas dan dibagi menjadi tiga bagian direndam air sampai tertutupi seluruhnya, hal itu dilakukan untuk mencegah umbi menjadi membiru (racun) serta sampai dibersihkan sampai permukaan tidak licin. Lanjut ke proses pemarutan dengan menggunakan alat Crusher. Pada tahap ini pemasukan umbi singkong ke Crusher

tidak bisa sekaligus, secara bertahap sambil ditekan-tekan umbinya ke pemotong alat tersebut menggunakan spatula kayu dan tentunya sambil ditambahkan air dengan perbandingan singkong dengan air (5:1), ditambahkan secara perlahan per 5 liter penambahan air agar bisa mengalir dari dalam alat. Namun tidak seluruh saat pemarutan, sisanya ditambahkan setelah terparut agar tidak terlalu pekat parutannya.

Tahap berikutkan setelah menjadi parutan dimasukan ke dalam Raw Starch Milk Tank agar nantinya dialirkan ke Auto Brush Strainer selanjutnya ke Nozzle Separator. Pada Raw Starch Milk Tank diberi pompa untuk mengalirkan

parutan tersebut dan diberi juga Agitator untuk mengaduk parutan tersebut. Pada

tahapan ini mulai dari Raw Starch Milk Tank, Auto Brush Strainer, dan Nozzle Separator berlaku sistem kontinyu. Sebelum dimasukan parutan singkong,

dilakukan CIP (Cleaning in Place) dengan air dan parutan singkong sebagai

pembersih awal. Pada alat Auto Brush Strainer ada lubang keluaran ampas yang

harus selalu diatur keluarannya agar di dalam alat tidak penuh dengan ampas. Air hasil ekstrasi tersebut di alirkan ke Nozzle Separator, Kecepatan harus 6000rpm

agar pati terpisah.

Setelah pati keluar dari Nozzle Separator ditampung di ember besar dan

ditunggu sekitar 2 jam setelah pati keluar dari alat sampai warna airnya bening dan pati mengendap seluruhnya. Lalu buang airnya dan mulai keringanginkan di rumah kaca selama 2 jam. Selama waktu tersebut harus terus dikontrol dengan dibolak-balikkan panas dalam rumah kaca berkisar antar 35-400C pada waktu optimum diluar saat pukul 10-13 karena lewat waktu tersebut suhu dalam rumah kaca turun. Setelah itu dikeringkan di Cabinet Dryer dengan suhu 500C selama 8

jam. Saat pengeringan di Cabinet Dryer pati ditaruh di empat rak dan setiap satu

(23)

13 pati yang menggumpal saat pengeringan akan menjadi asam saat setelah kering. Hal itu disebatkan kadar air dalam pati yang menggumpal tersebut berbeda. Dan setiap jam rak harus terus disirkulasikan dari bagian bawah ke bagian atas karena udara panas dibagian bawah lebih banyak ketimbang diatas. Setelah kering maka pati telah menjadi tapioka lalu digiling dengan Disc Mill yang didalamnya ada

berupa Pin yang bisa mengayak tapioka tersebut, ukuran ayakan Pin tersebut 80

mesh karena 80 mesh sudah termasuk tapioka grade B (Radley 1976). Pembuatan tapioka pada tabel 3 hanya digunakan pada singkong karet 2, sedangkan untuk singkong manggu 1, manggu 2 dan karet 1 menggunakan tanoa alat Raw Starch Milk Tank.

Tabel 3 Diagram modifikasi proses pembuatan tapioka

ALAT PROSES PARAMETER KETERANGAN

Pisau Pengupasan dan

Pembersihan Sampai permukaan umbi bersih dan tidak licin, dipotong

Crusher Pemarutan Ditambahkan air Penambahan

air : singkong (5:1)

Raw Starch Milk Tank

Penyimpanan parutan Dialirkan dengan pompa ke Auto Brush Strainer

Sistem kontinyu

Auto Brush Strainer

Ekstraksi parutan Ampas dibuang Sistem kontinyu

Nozzle

Disc Mill Penggilingan dan

Pengayakan Pengayakan ukuran 80 mesh Standar kehalusan

tapioka grade B (Radley 1976)

(24)

14

Penggunaan perbandingan air dengan singkong segar yaitu 5:1. Hasil tapioka seperti Tabel 4 dinyatakan rendemen tertinggi yaitu saat pembuatan tapioka singkong manggu 2 yaitu 12.13 %, dan rendemen terendah saat pembuatan tapioka singkong karet 2 adalah 7.23% , hal itu disebabkan banyaknya

loss di alat yaitu terbuang saat di Raw Starch Milk Tank karena penambahan air

yang kurang saat akan dilakukan dengan sistem continous maupun saat proses

penggilingan pada alat Pin Disc Mill. Sehingga tidak menggambarkan pengaruh

varietas terhadap hasil rendemen yang didapatkan. Selain itu, rata-rata pengeringan dilakukan dengan suhu 50oC selama 8 jam dengan Cabinet Dryer, hal tersebut diakibatkan karena udara panas bersirkulasi pada Cabinet Dryer tidak

dapat kontak yang signifikan terhadap tapioka sehingga harus setiap jam disirkulasikan keempat rak Cabinet Dryer dari bawah ke atas agar pengeringan

merata.

Berdasarkan Gambar 4 kadar pati dari masing-masing tapioka tidak berbeda nyata (P>0.05). Sedangkan untuk amilosa didapatkan hasil yang berbeda nyata pada taraf siginifikansi 0.05 (P<0.05). Hal itu memang dikarenakan setiap varietas singkong memilki karakteristik rasio penyusunan amilosa-amilopektin yang berbeda. Maka daripada itu hasilnya yang diperoleh amilopektinnya pun berbeda nyata antar kedua varietas. Kadar amilosa dari tapioka singkong manggu lebih kecil yaitu 19.59% dan 19.63%, sedangkan tapioka singkong karet lebih tinggi dengan nilai 26.38% dan 28.5%.

Gambar 4 Kadar Pati, Amilosa, Amilopektin

19

manggu 1 manggu 2Tapioka Tapioka karet1 Tapioka karet2

(25)

15 Perbedaan nilai kadar pati dan amilosa pada tepung tapioka dapat terjadi karena perbedaan varietas singkong dan waktu panen singkong. Radley (1976) menyatakan bahwa kandungan pati singkong meningkat seiring dengan waktu panen. Waktu yang dibutuhkan umbi singkong untuk mencapai kematangan berbeda tergantung iklim dan lokasi penanamannya. Sriroth et al.

(1999) menyatakan bahwa kadar amilosa dan pati singkong pada umumnya akan lebih rendah pada tanaman yang masih dalam fase pertumbuhan (belum siap panen).

Swelling Power

Gambar 5 menyatakan bahwa nilai Swelling power tidak berbeda nyata

pada taraf signifikansi 0.05 (P<0.05). Dengan perbedaan amilosa antar varietas tidak cukup membuat nilai Swelling Power berbeda nyata. Seharusnya Swelling power yang tinggi karena meningkatnya amilopektin pada pati. Swelling power

terjadi karena adanya ikatan non-kovalen antara molekul-molekul pati. Bila pati dimasukkan ke dalam air dingin, granula pati akan menyerap air dan membengkak. Ketika granula pati dipanaskan dalam air, granula pati mulai mengembang (swelling).

Gambar 5 Swelling Power

Profil Pasting Pati

Berdasarkan Tabel 4 bahwa suhu gelatinisasi terendah ada pada tapioka manggu 1 yaitu 67.650C, sedangkan tertinggi ada tapioka karet 1 adalah 68.250C. Suhu gelatinisasi yang rendah menunjukkan bahwa hidrasi air pada tapioka lebih mudah terjadi, sehingga pada suhu yang lebih rendah garnula pati sudah mulai tergelatinisasi. Viskositas puncak tertinggi ada pada sampel tapioka manggu 1 dan terendah pada tapioka karet 2 dengan nilai 7036.5 cP dan 6834.5 cP. Nilai viskositas tertinggi menyatakan bahwa besarnya terhidrasinya air ke dalam granula pati.

manggu 1 manggu 2Tapioka Tapioka karet1 Tapioka karet2

(26)

16

Tabel 4 Profil pasting masing-masing tapioka Sampel Suhu

Nilai breakdown yang besar menunjukkan bahwa granula pati tahan panas.

Semakin tinggi nilai setback maka semakin tinggi juga kemampuan pati

beretrogadasi (Kusnandar 2010) atau memberikan efek keras. Nilai breakdown

besar dimiliki oleh tapioka manggu 2 dengan 5116 cP, sedangkan nilai setback

tertinggi yaitu 1261.5 cP. Kurva profil pasting tapioka dilihat di Gambar 6

Gambar 6 Kurva profil pasting tapioka

Ada beberapa faktor yang mempengaruhi sifat pola gelatinisasi pati diantaranya sumber pati, ukuran granula, adanya asam, gula, lemak dan protein, enzim, suhu pemasakannya serta pengadukannya (Kusnandar 2010). Dilihat dari kurva bahwa tidak terlihat perbedaan dari masing-masing tapioka. Hal itu tejadi karena proses pembuatan tapioka yang konsisten dengan pemisahan secara mekanis, tidak dengan pembuatan pengendapan seperti cara tradisional. Hal itu terjadi karena ukuran granula yang ada pada tapioka seragam. Dengan seragamnya ukuran granula granula pati pada tapioka pada saat adanya hidrasi air dan perlakuan pemanasan terjadi gelatinisasi yang serentak pada semua bagian tapioka sehingga hasil pola gelatinisasi terlihat sama.

0

Visc(cp) karet 1 Visc(cp) karet 2 Visc(cp) manggu 1

(27)

17

Analisis Produk Akhir Pilus Terhadap kerenyahan

Secara objektif menggunakan Stable Micro System TAXT2 Texture Analyzer.

Dan analisis sensori secara subjektif menggunakan uji Rating. Berdasarkan Tabel

5 bahwa pilus yang memiliki gaya tertinggi yaitu pada tapioka singkong karet 2 yaitu 10.29 kgf, sedangkan yang terendah yaitu pilus dari tapioka singkong manggu 1 dengan nilai 8.65 kgf. Hasil uji sensori intesitas kerenyahan kepada panelis umum diketahui bahwa pilus dari tapioka singkong karet ulangan memiliki skor intensitas kerenyahan lebih kecil yaitu 2.67 dan tertinggi kerenyahannya yaitu tapioka singkong manggu 1 dengan nilai 3.52 serta menurut analisis statistika dengan SPSS 20.0 skor intensitas kerenyahan masing-masing tapioka berbeda nyata. Sedangkan untuk skor kesukaan tertinggi ada pada tapioka singkong manggu 2 yaitu 3.53, terendah pada tapioka singkong karet 2 dengan skor 2.7.

Tabel 5 . Data tekstur dan sensori kerenyahan produk pilus Sampel Kekerasan (kgf) Skor intensitas

kerenyahan Skor kesukaan lainnya. Hal itu berati hasil analisis produk akhir pilus dengan secara objektif dan subjektif menunjukkan bahwa jika gaya tinggi yang diujikan pada Texture Analyzer sejalan dengan hasil sensori dimana menunjukkan hasil yang

kerenyahannya kurang. Jika dibandingkan dengan tekstur pilus existing tidak

berbeda nyata dengan pilus dari tapioka karet dengan signifikansi 5% (P<0.05).

Parameter pendugaan korelasi terhadap kerenyahan pilus

Berdasarkan Tabel 6 didapatkan bahwa tapioka manggu 2 memiliki hasil yang baik. Dilihat dari skor sensori kesukaannya (3.53), skor sensori intensitas kerenyahannya (3.43) dengan nilai kekerasan 8.94 kgf, viskositas puncaknya (7033 cP), setback (1261 cP). Viskositas puncak, setback, kekerasan, skor kesukaannya tidak berbeda nyata antara tapioka singkong manggu 1, tapioka manggu 2 dan singkong karet 1 (P<0.05). Berarti untuk mendapatkan kerenyahan pilus yang baik harus memiliki rasio amilosa-amilopektin 0.3–0.5, viskositas puncaknya di interval 6895–7036 cP dengan setback 1038-1219 cP, nilai kekerasannya 8.6–9.5 kgf. Namun pilus existing mirip dengan singkong karet

(28)

18

Tabel 6 Parameter pendugaan korelasi terhadap kerenyahan pilus Parameter Tapioka

Pemilihan bahan baku yang tepat untuk menghasilkan pilus yang memiliki kerenyahan yang baik menjadi sangat penting. Singkong yang akan dipilih unuk dijadikan tapioka dan selanjutnya tapioka diolah menjadi pilus, harus diperhatikan umur panen singkongnya yang sesuai yaitu berumur 8-9 bulan.

SIMPULAN DAN SARAN

Simpulan

Alur proses pembuatan tapioka dengan skala pilot yaitu pengupasan dan pembersihan, pemarutan dengan crusher, diekstraksi dengan auto brush strainer,

pemisahan secara mekanis dengan nozzle separator, dikeringkananginkan di

rumah kaca selama 2 jam dan pengeringan suhu 500C dengan cabinet dryer selama 8 jam serta penggilingan dan pengayakan 80 mesh dengan disc mill

menghasilkan karakter pilus yang renyah. Varietas singkong berpengaruh terhadap karakter tapioka yaitu singkong manggu dengan umur panen 8-9 bulan memiliki nilai tekstur pilus secara sensori kerenyahan yang baik yaitu antara yang memiliki kekerasan 8.65-8.94 kgf dengan karakter tapioka yang rasio amilosa-amilopektinnya antara 0.3436-03469., vikositas puncaknya 7033-7036 cP dan setbacknya 1219-1261 cP. Namun pilus dari tapioka singkong karet dengan umur panen 11-12 bulan memiliki kemiripan tekstur dengan pilus existing dengan nilai

(29)

19

Saran

Disarankan memilih tapioka yang rasio amilosa-amilopektin yang 0.3436-0.3469, kekerasan 8.65.8.94 kgf, vikositas puncaknya 7033-7036 cP dan setbacknya 1219-1261 cP. Pengendaliannya dari umur panen singkong, umur panen singkong 8-9 bulan untuk pilus yang disukai.

DAFTAR PUSTAKA

Apriyantono, A., D. Fardiaz, N. L. Puspitasari, Sedarnawati, dan S. S. Budijanto. 1998. Petunjuk Laboratorium Analisis Pangan. PAU Pangan dan Gizi IPB, Bogor.

Balitbang Departmen Pertanian. 2011. Inovasi Pengolahan Singkong Meningkatkan Pendapatan dan Diversifikasi Pangan. Jurnal AgroInovasi

Sinartani Edisi 4-10 Mei 2011 No.3404 Tahun XLI

Bokanga M. 2001. Cassava: Post-harvest biodeterioration. International; Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. [terhubung berkala] http://www.cgiar.org/iita/ (20 Mei 2014)

Brooker, D.B., F.W. Bakker dan C.W. Hall. 1973. Drying Cereal Grains. The

AVIPublishing Co., Inc. Westport, Connecticut, USA

De Leon SY., OC Bravo dan LO Martirez. 1988. Fruits and Vegetables Dehydration Manual. Kalayan Press Mktg. Ent., Inc. Quizon City.

Direktorat Standardisasi Produk Pangan. 2006. SK Kepala Badan Pengawas Obat dan Makanan Republik Indonesia No HK. 00.05.52.4040 tentang Kategori Pangan. Direktorat Standardisasi Produk Pangan BPOM RI. Jakarta

[DSN] Dewan Standardidasi Nasional. 1992. Cara Uji Gula (SNI 01-2892-1992).

Dewan Standardidasi Nasional, Jakarta

[DSN] Dewan Standardisasi Nasional. 1994. Tepung Tapioka (SNI

01-3451-1994). Dewan Standardisasi Nasional, Jakarta.

Ford TC dan J M Graham. 1991. An Introduction to Centrifugation. Bios

Scientific Publishers, Oxford

Kusnandar F. 2010. Kimia Pangan : Komponen Makro. Dian Rakyat: Jakarta

Kusumawardhani, A.R. 2013. Pembuatan Tapioka dengan Pengering Semprot dan Pengering Kabinet serta Aplikasinya pada Produk Pilus di PT.GarudaFood Putra Putri Jaya. [skripsi]. Bogor (ID): Institut Pertanian

Bogor.

Leach HW, Mc Cowen LD, Schoch TJ (1959). “Structure of the starch granules. In: swelling and solubility patterns of various starches”. Cereal Chem. 36: 534

– 544.

Murillo CEC, Wang Yi dan Perez LAB 2008. Morphological, Physicochemical and Structural Characteristics of Oxidized Barley and Corn Starches, Starch/

Starke Vol 60, 634-645

Radley JA. 1976. Starch Production Technology. Applied Science Publisher ltd.

London.

(30)

20

Suprapti M Lies. 2005. Teknologi Pengolahan Pangan : Tapioka ; Pembuatan dan Pemanfaatannya. Yogyakarta : Penerbit Kanisius.

Yuningsih. 2009. Perlakuan Penurunan Kandungan Sianida Ubikayu untuk Pakan Ternak. Jurnal Penelitian Pertanian Tanaman Pangan Balai Besar

(31)

21

LAMPIRAN

Lampiran 1 Foto proses pembuatan tapioka

Singkong

Singkong setelah dikupas dan dibersihkan

Crusher: alat pemarut singkong

Parutan singkong

Raw Starch Milk Tank dan Auto Brush Strainer

Nozzle Separator

(32)

22

pati keluar dari Nozzle Separator

pati setelah airnya dibuang

Rumah Kaca

pati setelah dikeringanginkan selama 2 jam di rumah kaca

Cabinet Dryer

(…lanjutan)

(33)

23

Tapioka setelah kering

Disc Mill

(34)

24

(35)

25 Lampiran 5 Kadar amilosa

Sampel ulangan Amilosa Rataan(%) Deviasi

Tapioka manggu 1 1 20,3089 19,5876 1,0201

2 18,8663

Tapioka manggu 2 1 20,108 19,63475 0,6693

2 19,1615

Tapioka karet 1 1 28,8878 26,3795 3,5473

2 23,8712

Tapioka karet 2 1 28,8686 28,507 0,5114

2 28,1454

Lampiran 6 Swelling Power

Sampel ulangan Swelling power Rataan Deviasi

Tapioka manggu 1 1 3,5854 3,5155 0,0691

2 3,4472

3 3,5139

Tapioka manggu 2 1 2,8936 3,0022 0,1294

2 3,1454

3 2,9677

Tapioka karet 1 1 3,8803 3,6469 0,4728

2 3,9576

3 3,1028

Tapioka karet 2 1 3,0785 3,760633 0,8525

2 3,4871

(36)

26

Lampiran 7 Tabel Data tekstur

(37)

27 Lampiran 8 Tabel sensori intensitas kerenyahan

(38)

28

Lampiran 9 Tabel sensori hedonik

(39)

29

Kriteria: Tingkat kesulaan kerenyahan pilus 1 = Sangat tidak suka 1 = Sangat tidak renyah

(40)

30

Lampiran 10 Hasil analisis ANOVA kadar pati Dependent Variable: Pati

Source Type III Sum of

Squares Df Mean Square F Sig.

Corrected Model 4,223a 3 1,408 ,313 ,816

Intercept 46958,544 1 46958,544 10458,108 ,000

Jenis_singkong 4,223 3 1,408 ,313 ,816

Error 17,961 4 4,490

Total 46980,727 8

Corrected Total 22,183 7

Lampiran 11 Hasil analisis ANOVA kadar amilosa Dependent Variable: Amilosa

Corrected Total 141,544 7

Pati

Duncan

Jenis_singkong N Subset

1

Jenis_singkong N Subset

(41)

31 Lampiran 12 Hasil analisis ANOVA kadar amilopektin

Dependent Variable: Amilopektin

Source Type III Sum of

Squares df Mean Square F Sig.

Corrected Model 127,320a 3 42,440 7,611 ,040

Intercept 22546,282 1 22546,282 4043,347 ,000

Jenis_singkong 127,320 3 42,440 7,611 ,040

Jenis_singkong N Subset

1 2

Lampiran 13 Hasil analisis ANOVA swelling power

Dependent Variable: Swelling_power

Jenis_singkong N Subset

(42)

32

Lampiran 14 Hasil analisis ANOVA tekstur pilus Dependent Variable: Tekstur

Source Type III Sum of

Squares

Df Mean Square F Sig.

Corrected Model 69.811a 4 17.453 5.519 .000

Intercept 13673.519 1 13673.519 4323.519 .000

Jenis_singkong 69.811 4 17.453 5.519 .000

Error 458.576 145 3.163

Total 14201.906 150

Corrected Total 528.387 149

Tekstur

Duncan

Jenis_singkong N Subset

1 2

Tapioka manggu 1 30 8.6521 Tapioka Manggu 2 30 8.9470

Tapioka karet 1 30 9.5187 9.5187

Tapioka karet 2 30 10.2928

Pilus Existing 30 10.3274

Sig. .076 .098

Lampiran 15 Hasil analisis ANOVA sensori intensitas kerenyahan Dependent Variable: intensitas

Source Type III Sum of

Squares df Mean Square F Sig.

Corrected Model 15,837a 3 5,279 13,630 ,000

Intercept 1165,168 1 1165,168 3008,347 ,000

Jenis_singkong 15,837 3 5,279 13,630 ,000

Error 47,252 122 ,387

Total 1224,250 126

(43)

33

Intensitas

Duncan

Jenis_singkong N Subset

1 2

Lampiran 16 Hasil analisis ANOVA sensori kesukaan pilus Dependent Variable: hedonic

Corrected Total 57,322 121

Lampiran 17 Hasil analisis ANOVA viskositas puncak Dependent Variable: viskositas puncak

Source Type III Sum

of Squares

Df Mean Square F Sig.

Corrected Model 61472.500a 3 20490.833 5.197 .073

Intercept 386392200.500 1 386392200.500 98000.685 .000

jenis_singkong 61472.500 3 20490.833 5.197 .073

Error 15771.000 4 3942.750

Total 386469444.000 8

Corrected Total 77243.500 7

Duncan

Jenis_singkong N Subset

(44)

34

Viskositas puncak

Duncan

Jenis_singkong N Subset

1 2

Singkong karet 2 2 6834.5000

Singkong karet 1 2 6895.0000 6895.0000

Singkong manggu 2 2 7033.0000

Singkong manggu 1 2 7036.5000

Sig. .390 .092

Lampiran 18 Hasil analisis ANOVA setback Dependent Variable: setback

Source Type III Sum of

Squares

Df Mean Square F Sig.

Corrected Model 61472.500a 3 20490.833 5.197 .073

Intercept 386392200.500 1 386392200.500 98000.685 .000

jenis_singkong 61472.500 3 20490.833 5.197 .073

Error 15771.000 4 3942.750

Total 386469444.000 8

Corrected Total 77243.500 7

Setback

Duncan

Jenis_singkong N Subset

1 2

Singkong karet 2 2 6834.5000

Singkong karet 1 2 6895.0000 6895.0000

Singkong manggu 2 2 7033.0000

Singkong manggu 1 2 7036.5000

(45)

35

RIWAYAT HIDUP

Gambar

Gambar 1 Diagram alir pembuatan tapioka (Setyono et al. 1991 dalam
Gambar 3 Diagram alir pembuatan pilus
Tabel 2 Bahan baku utama
Tabel 3 Diagram modifikasi proses pembuatan tapioka
+6

Referensi

Dokumen terkait