• Tidak ada hasil yang ditemukan

RANCANG BANGUN HEAT EXCHANGER TUBE FIN SATU PASS, Rancang Bangun Heat Exchanger Tube Fin Satu Pass, Shell Tiga Pass Untuk Mesin Pengering Empon-Empon.

N/A
N/A
Protected

Academic year: 2017

Membagikan "RANCANG BANGUN HEAT EXCHANGER TUBE FIN SATU PASS, Rancang Bangun Heat Exchanger Tube Fin Satu Pass, Shell Tiga Pass Untuk Mesin Pengering Empon-Empon."

Copied!
19
0
0

Teks penuh

(1)

RANCANG BANGUN HEAT EXCHANGER TUBE FIN SATU PASS,

SHELL TIGA PASS UNTUK MESIN PENGERING EMPON-EMPON

Disusun sebagai salah satu syarat menyelesaikan Program Studi Strata I pada Jurusan Teknik Mesin Fakultas Teknik

Oleh:

SAKA SAPUTRA NIM : D 200 12 0019

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK

(2)
(3)
(4)
(5)

RANCANG BANGUN HEAT EXCHANGER TUBE NON FIN SATU PASS,

SHELL TIGA PASS UNTUK MESIN PENGERING EMPON-EMPON

Abstrak

Heat Exchanger atau penukar kalor adalah alat yang berfungsi menukar kalor antara dua fluida yang berbeda temperatur tanpa mencampurkan kedua fluida tersebut. Tujuan penelitian ini adalah mengetahui pengaruh variasi debit pada Heat Exchanger tube fin satu pass shell tiga pass untuk pengeringan kunir. Dengan variasi debit 0,026, 0,028, dan 0,030 m3/s. Cara kerja dari heat exchanger ini adalah : pertama, fluida dingin berupa udara dari blower mengalir masuk ke dalam Heat Exchanger. Kedua, fluida dingin akan menerima kalor dari fluida panas yang mengalir dalam shell yang sebelumnya dipanaskan oleh kompor didalam heat exhanger, dan setelah itu fluida dingin tersebut keluar dari heat exchanger dan masuk ke dalam mesin pengering empon-empon. Hasil kalor yang optimal didapatkan pada variasi debit fluida dingin 0,030 m3/s. Jadi disimpulkan bahwa semakin besar debit fluida dingin maka perubahan temperatur dan kalor debit fluida dingin semakin besar.

Kata kunci : Alat Penukar Kalor,Debit , Kalor, fluida

Abtract

Head exchanger is a tool for exchange the head between two different fluids temperature witthout mixing it. The aim of this research is to know the influence of debit variety in one heat exchanger tube fine pass three pass for turmeric drying by 0,026; 0,028; and 0,030 m3/s debit variety.The steps of heat exchanger are : firstl, cold fluid that form as air from the blower flo int the heat exchanger. secondly, the cold fuids will get heat from the hot fluids, that flow in shell has been heated before by the stove in heat exchanger, and then the cold fluids out of the heat exchanger and entry the herbs and spices drying machine.Optimum heat result gotten in 0,030 m3/s cold fluds debit variety. The conclusion is greater cold fluids debit rate, the temperature exchange and cold fluids debit ht will be greater also.

Keywords : Heat Exchanger, Debit, Heat, Fluid

1. PENDAHULUAN 1.1.Latar Belakang

(6)

2

Pada salah satu prosesnya, sebelum dijadikan serbuk terdapat proses pengeringan yaitu dengan mengurangi kadar air dari empon-empon itu sendiri.

Pengeringan alamiah memanfaatkan sinar matahari untuk mengeringkan empon-empon dan pada proses alami ini sangat bergantung dengan cuaca, sedangkan empon-empon pada saat cuaca mendung atau hujan pengeringannya jadi terkendala, maka empon-empon tidak bisa kering dan diproses ke tahap selanjutnya. Sehingga pada musim hujan

menjadi suatu kendala dalam proses ini. Sedangkan pengeringan non alamiah dengan cara menggunakan menggunakan mesin, sehingga proses pengeringan lebih cepat dan tidak ada kendala cuaca.

Mesin pengering yang digunakan untuk mengeringkan bahan basah tersebut adalah heat exchanger, dengan cara mengalirkan udara panas secara berkelanjutan. Heat Exchanger adalah alat penukar kalor yang berfungsi menukar kalor antara dua fluida yang berbeda temperatur tanpa mencampurkan kedua fluida tersebut. Proses tersebut terjadi dengan memanfaatkan proses perpindahan kalor dari dua fluida yang bersuhu berbeda. Dalam perkembangannya heat exchanger mengalami perubahan bentuk yang sesuai dengan fungsi kerjanya. Bentuk heat exchanger yang sering digunakan ialah shell and tube. Dengan berbagai pertimbangan bentuk ini dinilai memiliki banyak keuntungan baik dari segi fabrikasi, biaya, hingga unjuk kerja.

1.2. Tujuan

Tujuan dari penelitian ini adalah :

Mendapatkan desain dan kontruksi Heat Exchanger shell and tube fin untuk pengeringan empon-empon.

Mengetahui pengaruh variasi debit fluida dingin terhadap perubahan massa kunir.

Mengetahui pengaruh variasi debit fluida dingin terhadap temperatur

(7)

Mengetahui pengaruh variasi debit fluida dingin terhadap kalor yang diiterima fluida dingin (qc).

Mengetahui pengaruh variasi debit fluida dingin terhadap efisiensi heat exchanger

1.3.Batasan Masalah

Adapun batasan dalam penelitian ini, yaitu :

Mesin pengering Empon-empon,Variasi yang digunakan dalam penelitian ini adalah debit fluida dingin 0.026, 0,028, 0,030 (m3/s),Bahan yang

digunakan adalah kunir sebanyak 1 kg,Indikator penelitian adalah variasi debit fluida dingin terhadap hasil penelitian, Menggunakan blower sentrifugal, Jumlah tube 8 dan pada setiap tube terdapat 6 fin, Pengujian yang dilakukan dalam peneltian ini adalah satu kali pada setiap varisi debitnya.

2. METODE PENELITIAN 2.1.Alat dan Bahan

Gambar 1. Alat penelitian

(8)

4 1. Mesin pengering empon-empon

2. Heat Exchanger

3. Thermocouple 4 (Tho)

4. Blower

5. Thermocouple 1 (Tci)

6. Thermoreader

7. Thermocouple 3 (Thi) 8. Kompor

9. Thermocouple 2 (Tco) 10. Motor

11.Gear Reducer

Bahan yang digunakan dalam penelitian adalah Udara, Kunyit dan gas LPG

= Aliran fluida dingin = Aliran fluida panas

(9)

2.2.Diagram Alir Penelitian

Gambar 3. Diagram Alir Penelitian 2.3.Tahapan Penelitian

Sebelum pengujian yaitu menyiapkan bahan-bahan seperti kunyit, gas LPG, serta memasang regulator pada tabung gas, merangkai thermocouple kemudian pasangkan ke heat exhanger dan menyiapkan stopkontak yang nantinya untuk menyalakan motor listrik.

Memastikan atau mengecek instalasi semua sudah terpasang terpasang dengan benar dan bahan sudah siap selanjutnya mengatur tutupan pada blower sebagai variasi debit.

(10)

6

Mencatat temperatur pada thermocouple setiap 10 menit sekali dalam waktu 30 menit.

Mematikan blower, kompor dan mesin pengering empon-empon secar bersamaan, kemudian mengambil kunyit.

Menimbang kunyit dengan timbangan digital, dan menimbang tabung gas LPG denga timbangan analog, kemudian hitung selisih massa kunir dan tabung sebelum dan sesudah pengujian.

Dinginkan Alat hingga suhu normal.

Lakukan pengujian seperti diatas dengan variasi debit yang berbeda.

(11)

Peng-3.2. Pengaruh Variasi Debit Fluida Dingin Terhadap Perubahan Temperatur Fluida Dingin

Gambar 4. Pengaruh variasi debit fluida dingi terhadap perubahan

temperatur fluida dingin (∆Tc)

Pada gambar di atas menunjukan pengaruh debit fluida dingin terhadap perubahan temperatur dingin, hasil perubahan temperatur pada debit fluida dingin 0,026 m3/s dengan hasil perubahan temperatur fluida dingin 70,5 °C, sedangkan pada debit fluida dingin 0,028 m3/s didapatkan

hasil perubahan temperatur fluida dingin adalah 74,4 °C, Dan pada debit fluida dingin 0,030 m3/s dengan hasil perubahan temperatur fluida dingin

sebesar 78,1 °C. Dari diagram di atas didapatkan perubahan temperatur fluida dingin terbesar pada debit 0,030 m3/s dengan perubahan temperautur fluida dingin sebesar 78,1 °C.

(12)

8

3.3. Pengaruh Variasi Debit Fluida Dingin Terhadap Kalor yang Diterima Fluida Dingin

Gambar 5. Pengaruh variasi debit fluida dingin terhadap kalor yang diterima fluida dingin (qc)

Pada gambar di atas menunjukan pengaruh debit fluida dingin terhadap kalor yang diterima fluida dingin, hasil kalor yang diterima fluida dingin pada debit fluida dingin 0,026 m3/s dengan hasil kalor yang diterima fluida dingin 1989,729 W, sedangkan pada debit fluida dingin 0,028 m3/s didapatkan hasil kalor yang diterima fluida dingin adalah 2249,856 W, Dan pada debit fluida dingin 0,030 m3/s dengan hasil kalor yang diterima fluida dingin sebesar 2519,194 W. Dari diagram diatas didapatkan kalor yang diterima fluida dingin terbesar pada debit 0,030 m3/s dengan kalor yang diterima fluida dingin sebesar 2519,194 W.

(13)

3.4. Pengaruh Variasi Debit Fluida Dingin Terhadap Koefisien Perpindahan Kalor Total

Gambar 6. Pengaruh variasi debit fluida dingin terhadap koefisien perpindahan kalor total (U)

Pada gambar di atas menunjukan pengaruh debit fluida dingin terhadap koefisien perpindahan kalor total, hasil koefisien perpindahan

(14)

10

3.5. Pengaruh Variasi Debit Fluida Dingin Terhadap Koefisien Perpindahan Kalor Fluida Dingin

Gambar 7. Pengaruh variasi debit fluida dingin terhadap Perpindahan kalor fluida dingin (hc)

Pada gambar di atas menunjukan pengaruh debit fluida dingin terhadap koefisien perpindahan kalor fluida dingin, hasil koefisien perpindahan kalor total pada debit fluida dingin 0,026 m3/s dengan hasil koefisien perpindahan kalor fluida dingin 252,981 W/m2K, sedangkan pada debit fluida dingin 0,028 m3/s didapatkan hasil koefisien perpindahan

kalor fluida dingin adalah 267,232 W/m2K Dan pada debit fluida dingin 0,030 m3/s didapat koefisien perpindahan kalor fluida dingin sebesar 280,495 W/m2K. Dari diagram di atas didapatkan koefisien perpindahan kalor total terbesar pada debit 0,030 m3/s dengan koefisien perpindahan kalor fluida dingin sebesar 280,495 W/m2K.

(15)

3.6. Pengaruh Variasi Debit Fluida Dingin Terhadap Efisiensi Heat Exchanger

Gambar 8. Pengaruh variasi debit fluida dingin terhadap efisiensi ( )

Pada gambar di atas menunjukan pengaruh debit fluida dingin terhadap efisiensi Heat Exchanger, hasil efisiensi Heat Exchanger pada debit fluida dingin 0,026 m3/s dengan hasil efisiensi Heat Exchanger 31,74 %, sedangkan pada debit fluida dingin 0,028 m3/s didapatkan hasil efisiensi Heat Exchanger adalah 35,88 % , Dan pada debit fluida dingin

0,030 m3/s dengan hasil efisiensi Heat Exchanger sebesar 40,18 %. Dari diagram di atas didapatkan efisiensi Heat Exchanger terbesar pada debit 0,030 m3/s dengan efisiensi Heat Exchanger sebesar 40,18 %.

(16)

12

3.7. Pengaruh Variasi Debit Fluida Dingin Terhadap Perubahan Massa Kunyit

Gambar 9. Pengaruh variasi debit fluida dingin terhadap perubahan

massa kunyit (∆mkunyit)

Pada gambar di atas menunjukan pengaruh debit fluida dingin terhadap perubahan massa kunyit, hasil perubahan massa kunyit pada debit

fluida dingin 0,026 m3/s dengan hasil perubahan massa kunyit 164 g, sedangkan pada debit fluida dingin 0,028 m3/s didapatkan perubahan massa kunyit adalah 183 g, Dan pada debit fluida dingin 0,030 m3/s dengan hasil perubahan massa kunyit sebesar 193 g. Dari diagram di atas didapatkan perubahan massa kunyit terbesar pada debit 0,030 m3/s dengan perubahan massa kunyit sebesar 193 g.

(17)

4. PENUTUP

4.1. Keesimpulan

Desain dan Kontruksi Heat Exchanger Tube fin satu pass, shell tiga pass menggunakan bahan plat besi dengan tebal 2 mm dengan ukuran panjang 1048 mm, tinggi 210 mm, lebar 206 mm dengan jumlah tube 8 dengan diameter 18 mm dengan tebal 2 mm dan panjang 800 mm, dengan fin berjumlah 48 dengan ukuran diameter dalam 22 mm, diameter luar 32

mm dan tebal 2 mm.

Semakin besar debit fluida dingin maka perubahan temperatur fluida dingin semakin besar. Pada debit fluida dingin 0,026 m3/s, perubahan temperatur fluida dingin yang dihasilkan 70,5 oC, pada debit fluida dingin 0,028 m3/s, perubahan temperatur fluida dingin yang dihasilkan 74,4 oC, dan pada debit fluida dingin 0,030 m3/s, perubahan temperatur fluida dingin yang dihasilkan 78,1 oC.

Semakin besar debit fluida dingin maka kalor yang diterima fluida dingin semakin besar. Pada debit fluida dingin 0,026 m3/s, kalor yang diterima fluida dingin sebesar 1989,729 W, pada debit fluida dingin 0,028 m3/s, kalor yang diterima fluida dingin sebesar 2249,856 W dan pada debit fluida dingin 0,030 m3/s, kalor yang diterima fluida dingin sebesar 2519,194 W.

Semakin besar debit fluida dingin maka koefisien perpindahan kalor total semakin besar. Pada debit fluida dingin 0,026 m3/s, koefisien perpindahan kalor total sebesar 289,454 W/m2K, pada debit fluida dingin 0,028 m3/s, koefisien perpindahan kalor total sebesar 332,202 W/m2K, dan pada debit fluida dingin 0,030 m3/s, koefisien perpindahan kalor total sebesar 375,670 W/m2K.

Semakin besar debit fluida dingin maka perubahan massa kunyit semakin besar. Pada debit fluida dingin 0,026 m3/s, perubahan massa kunyit

(18)

14

kunyit sebesar 183 g, dan pada debit fluida dingin 0,030 m3/s, perubahan massa kunyit sebesar 193 g.

4.2. Saran

Temperatur pembakaran harus dijaga supaya stabil, karena bila temperatur berubah maka kapasitas fluida panas yang dihasilkan juga akan berubah.

Pada pengujian selanjutnya peneliti dapat meningkatkan effisiensi heat exchanger dengan cara memberi isolator pada dindingnya, agar kalor

yang dihasilkan pada gas LPG tidak banyak terbuang ke ruangan. PERSANTUNAN

Syukur Alhamdulillah penulis panjatkan kehadirat Allah SWT atas berkat dan rahmat-NYA sehingga penyusunan laporan penelitian ini dapat terselesaikan.

Tugas Akhir berjudul “Rancang Bangun Heat Exchanger Tube Fin Satu Pass, Shell Tiga Pass Untuk Mesin Pengering Empon-empon”, dapat terselesaikan atas dukungan dari beberapa pihak. Untuk itu pada kesempatan ini, penulis dengan segala ketulusan dan keikhlasan hati ingin menyampaikan rasa terima kasih dan penghargaan yang sebesar-besarnya kepada:

Ir. Sri Sunarjono, MT., Ph.D., Dekan Fakultas Teknik Universitas Muhammadiyah Surakarta.

Tri Widodo Besar Riyadi, ST., MSc., Ph.D., Ketua Jurusan Teknik Mesin Universitas Muhammadiyah Surakarta.

Sartono Purto Ir., MT. Dosen pembimbing yang banyak memberikan ilmu, waktu, dorongan serta arahan dalam proses bimbingan sehingga penulis dapat menyelesaikan Tugas Akhir ini.

(19)

DAFTAR PUSATAKA

Ahmad. Wafi B, (2012). Rancang Bangun Heat Exchanger Shell and Tube Single Phase”. Skripsi. Fakultas Teknik Pertanian Universitas Diponegoro.

Anggraini Handoyo Ekadewi, (2000) Pengaruh Penggunaan Baffle pada Shell and Tube Heat Exchanger, Jurnal Teknik Mesin Universitas Kristen Petra Surabaya.

Angraini Handoyo Ekadewi, (2000) “Pengaruh Tebal Isolasi Thermal Terhadap

Efektivitas Plat Heat Exchanger”. Jurnal Teknik Mesin Universitas Kristen Petra.

Cengel, Y. A. (2003).”Heat Transfer”.Mc. Graw Hill New York

Kanginan, Marthen. (2007). “Seribu Pena FISIKA”. Jakarta: Erlangga.

Mukherjee Rajiv (1998).”Effectifity Design Shell and Tube Heat

Exchanger”.Chem Eng Progress.

Peter (2013). “Hairpin Heat Exchanger. From www.lv-soft.com

Wahyudi Didik, (2000).”Optimasi Heat Exchanger Tabung Konsentris”. Jurnal Teknik Mesin Universitas Kristen Petra Surabaya.

Yopi Handoyo, Ahsan ( 2012). “Analisis Kinerja Alat Penukar Kalor Jenis Shell

and Tube Pendingin Aliran Air pada PLTA Jatiluhur”. Skripsi. Fakultas

Teknik Jurusan Teknik Mesin Universitas Islam Bekasi.

Zainiudin, (2008) “Studi Eksperimental Efektivitas Alat Penukar Kalor Shell

and Tube dengan Memanfaatkan Gas Buang Mesin Diesel Sebagai

Gambar

Gambar 1. Alat penelitian
Gambar 2. Aliran fluida pada Heat exchanger
Gambar 3. Diagram Alir Penelitian
Tabel 2 Hasil perhitungan
+7

Referensi

Dokumen terkait

Menyelesaikan masalah yang berkaitan dengan keliling dan luas jajargenjang dan segitiga.

15) Pelaksanaan urusan penyelesaian barang yang dinyatakan tidak dikuasai, barang yang dikuasai Negara dan barang yang menjadi milik Negara. 16) Penyiapan pelelangan atas

membahas diskusi mengenai ketujuh IV yang digunakan dalam penelitian ini, yaitu emotional demands (job demands), work overload (job demands), cognitive demands (job

Analisis hubungan antara lebar bukaan paruh dengan ukuran pakan buahnya yang dapat ditelan langsung oleh burung pemakan buah dilakukan dengan uji korelasi. Hal ini karena

Permasalahan yang dibahas dalam penelitian ini adalah pendeskripsian tokoh wanita dan ketidakadilan gender yang ada dalam novel Rembang Jingga (2015) karya TJ

Dengan banyaknya orang tua menghendaki agar anak-anak mereka segera memiliki kemampuan berhitung di samping membaca dan menulis, maka dalam permainan berhitung

Respon genotipe berbeda nyata pada peubah tinggi tanaman, jumlah cabang, waktu bunga pertama muncul, waktu buah pertama muncul, rasio panjang dengan diameter buah, persentase jumlah

Proses perencanaan pengadaan alat medis dimulai dari sosialisasi dari pihak Direksi tentang penyusunan Rencana Anggaran Belanja (RAB) dan Program dari Rumah